Now Reading
Viruses take down massive algal blooms, with big implications for climate

Viruses take down massive algal blooms, with big implications for climate

This is a location map. Black rectangle delineates the area shown in Figures 1B and 2. (B) Map of surface chlorophyll from June 22, 2012 (day 174), emphasizing the phytoplankton patch as a distinct area of high chlorophyll concentration. Thick black lines mark the main attracting Lagrangian coherent structures from calculation of finite-size Lyapunov exponents. To facilitate the presentation, we plotted only the highest 20 percent of FSLEs (for the entire FSLE field, see Figure 2C). Thin black contour outline region of strong Chl gradient is used to define patch boundaries. Magenta diamonds mark the position of Argo floats used for extracting the mixed layer depth in the patch vicinity. Green diamonds mark the location of the sampling stations. Credit: Current Biology, Lehahn et al.
This is a location map. Black rectangle delineates the area shown in Figures 1B and 2. (B) Map of surface chlorophyll from June 22, 2012 (day 174), emphasizing the phytoplankton patch as a distinct area of high chlorophyll concentration. Thick black lines mark the main attracting Lagrangian coherent structures from calculation of finite-size Lyapunov exponents. To facilitate the presentation, we plotted only the highest 20 percent of FSLEs (for the entire FSLE field, see Figure 2C). Thin black contour outline region of strong Chl gradient is used to define patch boundaries. Magenta diamonds mark the position of Argo floats used for extracting the mixed layer depth in the patch vicinity. Green diamonds mark the location of the sampling stations.
Credit: Current Biology, Lehahn et al.
“This patch of ocean fixes about as much carbon as an equivalent patch of rainforest and then almost immediately turns much of it over”

Algae might seem easy to ignore, but they are the ultimate source of all organic matter that marine animals depend upon. Humans are increasingly dependent on algae, too, to suck up climate-warming carbon dioxide from the atmosphere and sink it to the bottom of the ocean. Now, by using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death dynamics of the algae’s blooms, even when all else stays essentially the same, and this has important implications for our climate.

According to results reported in the Cell Press journal Current Biology on August 21, a single North Atlantic algal bloom, about 30 kilometers in radius, converted 24,000 tons of carbon dioxide from the atmosphere into organic carbon via a process known as carbon fixation. Two-thirds of that carbon turned over within a week as that bloom grew at a very rapid rate and then quickly met its demise. A closer look at those algae revealed high levels of specific viruses infecting their cells.

To put it in perspective, Assaf Vardi of the Weizmann Institute of Science in Israel says that this patch of ocean fixes about as much carbon as an equivalent patch of rainforest and then almost immediately turns much of it over.

“This is, of course, only one patch out of numerous co-occurring patches in other parts of the Atlantic Ocean,” adds Ilan Koren, also of the Weizmann Institute, not to mention those algal blooms that appear in other seasons and ecosystems. “While the impact that viruses have on the entire ecosystem was previously estimated to be very large, we provide the first approach to quantify their immense impact on open ocean blooms.”

Read more . . .

 

The Latest on: Algal blooms

[google_news title=”” keyword=”Algal blooms” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

See Also
Pairing this floating sponge with an oxidizing agent could help destroy harmful algal blooms. Adapted from ACS ES&T Water 2023, DOI: 10.1021/acsestwater.3c00202
The Latest on: Algal blooms

via  Bing News

 

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top