Now Reading
Researchers identify new low-cost catalyst for hydrogen production

Researchers identify new low-cost catalyst for hydrogen production

Low cost Hydrogen Catalyst

To make sunlight practical as a dominant source of energy a viable storage technology needs to be developed. One promising area of research is imitating the process of photosynthesis to separate the hydrogen and oxygen atoms in water to create hydrogen fuel. An MIT team led by Daniel Nocera is now reporting that nickel borate can efficiently and sustainably function as the oxygen-producing electrode in such a process, bringing the dream of energy storage systems that would allow buildings to be completely independent and self-sustaining.

Like many people, Nocera, the Henry Dreyfus Professor of Energy and Professor of Chemistry at MIT, believes that solar energy is the only feasible long-term way of meeting the world’s ever-increasing needs for energy. That is why he has focused his research on the development of an efficient way to split water using electricity that could form the basis for new energy storage systems. The systems would use energy from intermittent sources like sunlight or wind to create hydrogen fuel, which could then be used in fuel cells or other devices to produce electricity or transportation fuels as needed.

Nocera pictures small-scale systems in which rooftop solar panels would provide electricity to a home, and any excess would go to an electrolyzer to produce hydrogen, which would be stored in tanks. When more energy was needed, the hydrogen would be fed to a fuel cell, where it would combine with oxygen from the air to form water, and generate electricity at the same time.

For such systems to become viable they must be cheap and reliable. So Nocera has concentrated on the development of less-expensive, more-durable materials to use as the electrodes in devices that use electricity to separate the hydrogen and oxygen atoms in water molecules.

See Also

Now, along with postdoctoral researcher Mircea Dinc? and graduate student Yogesh Surendranath, he is reporting the discovery of yet another material that can efficiently and sustainably function as the oxygen-producing electrode. This time the material is nickel borate, made from materials that are even more abundant and inexpensive than an earlier cobalt-based electrode.

Read more . . .

Reblog this post [with Zemanta]
What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top