Now Reading
Printing Tiny Batteries

Printing Tiny Batteries

lewis-battery-1-625x248
To create the microbattery, a custom-built 3D printer extrudes special inks through a nozzle narrower than a human hair. Those inks solidify to create the battery’s anode (red) and cathode (purple), layer by layer. A case (green) then encloses the electrodes and the electrolyte solution added to create a working microbattery. [Credit: Ke Sun, Bok Yeop Ahn, Jennifer Lewis, Shen J. Dillon]

Novel application of 3D printing could enable the development of miniaturized medical implants, compact electronics, tiny robots, and more

3D printing can now be used to print lithium-ion microbatteries the size of a grain of sand. The printed microbatteries could supply electricity to tiny devices in fields from medicine to communications, including many that have lingered on lab benches for lack of a battery small enough to fit the device, yet provide enough stored energy to power them.

To make the microbatteries, a team based at Harvard University and the University of Illinois at Urbana-Champaign printed precisely interlaced stacks of tiny battery electrodes, each less than the width of a human hair.

“Not only did we demonstrate for the first time that we can 3D-print a battery, we demonstrated it in the most rigorous way,”said Jennifer Lewis, Ph.D., senior author of the study, who is also the Hansjörg Wyss Professor of Biologically Inspired Engineering at the Harvard School of Engineering and Applied Sciences (SEAS), and a Core Faculty Member of the Wyss Institute for Biologically Inspired Engineering at Harvard University. Lewis led the project in her prior position at the University of Illinois at Urbana-Champaign, in collaboration with co-author Shen Dillon, an Assistant Professor of Materials Science and Engineering there.

The results were published in today’s online edition of Advanced Materials.

In recent years engineers have invented many miniaturized devices, including medical implants, flying insect-like robots, and tiny cameras and microphones that fit on a pair of glasses. But often the batteries that power them are as large or larger than the devices themselves — which defeats the purpose of building small.

To get around this problem, manufacturers have traditionally deposited thin films of solid materials to build the electrodes. However, due to their ultrathin design, these solid-state micro-batteries do not pack sufficient energy to power tomorrow’s miniaturized devices.

See Also

The scientists realized they could pack more energy if they could create stacks of tightly interlaced, ultrathin electrodes that were built out of plane. For this they turned to 3D printing. 3D printers follow instructions from three-dimensional computer drawings, depositing successive layers of material — inks — to build a physical object from the ground up, much like stacking a deck of cards one at a time. The technique is used in a range of fields, from producing crowns in dental labs to rapid prototyping of aerospace, automotive, and consumer goods. Lewis’ group has greatly expanded the capabilities of 3D printing. They have designed a broad range of functional inks — inks with useful chemical and electrical properties. And they have used those inks with their custom-built 3D printers to create precise structures with the electronic, optical, mechanical, or biologically relevant properties they want.

Read more . . .

 

The Latest Bing News on:
3D printed microbatteries
The Latest Google Headlines on:
3D printed microbatteries

[google_news title=”” keyword=”3D printed microbatteries” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Lithium-ion microbatteries
The Latest Google Headlines on:
Lithium-ion microbatteries

[google_news title=”” keyword=”lithium-ion microbatteries” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top