Now Reading
MIT CSAIL Project Could Transform Robotic Design and Production

MIT CSAIL Project Could Transform Robotic Design and Production

The project could have far reaching implications for a variety of fields.

The Massachusetts Institute of Technology (MIT) is leading an ambitious new project to reinvent how robots are designed and produced. Funded by a $10 million grant from the National Science Foundation (NSF), the project will aim to develop a desktop technology that would make it possible for the average person to design, customize and print a specialized robot in a matter of hours.

“This research envisions a whole new way of thinking about the design and manufacturing of robots, and could have a profound impact on society,” said MIT Professor Daniela Rus, leader of the project and a principal investigator at the MIT Computer Science and Artificial Intelligence Lab (CSAIL). “We believe that it has the potential to transform manufacturing and to democratize access to robots.”
“Our goal is to develop technology that enables anyone to manufacture their own customized robot. This is truly a game changer,” said Professor Vijay Kumar, who is leading the team from the University of Pennsylvania. “It could allow for the rapid design and manufacture of customized goods, and change the way we teach science and technology in high schools.”
The five-year project, called “An Expedition in Computing for Compiling Printable Programmable Machines,” brings together a team of researchers from MIT, the University of Pennsylvania and Harvard University, and is funded as part of the NSF’s “Expeditions in Computing” program.
It currently takes years to produce, program and design a functioning robot, and is an extremely expensive process, involving hardware and software design, machine learning and vision, and advanced programming techniques. The new project would automate the process of producing functional 3-D devices and allow individuals to design and build functional robots from materials as easily accessible as a sheet of paper.

“Our vision is to develop an end-to-end process; specifically, a compiler for building physical machines that starts with a high level of specification of function, and delivers a programmable machine for that function using simple printing processes,” said Rus.
Researchers hope to create a platform that would allow an individual to identify a household problem that needs assistance; then head to a local printing store to select a blueprint, from a library of robotic designs; and then customize an easy-to-use robotic device that could solve the problem. Within 24 hours, the robot would be printed, assembled, fully programmed and ready for action.
via MIT

Bookmark this page for “Robotic Design” and check back regularly as these articles update on a very frequent basis. The view is set to “news”. Try clicking on “video” and “2” for more articles.

See Also

>

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top