Now Reading
Innovative solar cell structure stores and supplies energy simultaneously

Innovative solar cell structure stores and supplies energy simultaneously

Winkle_solar_panels07_8199
A rooftop solar panel system at Jim Winkle’s Madison home collects solar energy on June 12, 2007. Winkle, a systems programmer with the Division of Information Technology (DoIT) at the University of Wisconsin-Madison, recently installed the solar panel system, designed to support his household’s annual 2,000 kilowatt-hours energy need. Credit: UW-Madison University Communications 608/262-0067 Photo by: Jeff Miller Date: 06/07 File#: D200 digital camera frame 8199

A design for solar panels that can simultaneously generate power from sunlight and store power reserves for later, all within a single device.

The potential energy available via solar power might seem limitless on a sunny summer day, but all that energy has to be stored for it to be truly useful. If you see a solar panel on a rooftop, in a large-scale array, or even on a parking meter, a bulky battery or supercapacitor is hidden just out of sight, receiving energy from the panel through power lines.

However, that’s a storage method that doesn’t scale well for solar-powered devices with no space for a battery pack.

In a quest for a smaller, more self-sustaining solar power source, a UW-Madison electrical engineer has proposed a design for solar panels that can simultaneously generate power from sunlight and store power reserves for later, all within a single device.

Hongrui Jiang and his students developed the idea, published in the journal Advanced Materials June 6. Jiang is the Vilas Distinguished Achievement Professor of electrical and computer engineering at UW-Madison and specializes in microscale devices. He and his students developed the technology as an offshoot of a National Institutes of Health grant to design a self-focusing contact lens that adapts to the eyes of adults suffering from presbyopia, a natural aging process that stiffens the lens and reduces the eye’s ability to focus, especially at short distances.

To power that contact lens, Jiang and his team have worked out a design that balances energy harvesting, storage and usage. “We needed a multi-functional and small-form-factor device in order to integrate it all into a single contact lens structure,” says Jiang.

The top layer of each photovoltaic cell is a conventional photo electrode, converting sunlight into electrons. During that conversion process, the electrons split off into two directions: most electrons flow out of the device to support a power load, while some are directed to a polyvinylidene fluoride polymer (PVDF) coated on zinc oxide nanowires. The PVDF has the high dielectric constant required to serve as an energy storage solution. “When there’s no sunlight, the stored power will come back through the nano wires to power the load.”

The final design allows for a standard-size solar cell that can simultaneously power a device and store energy for later use, creating a closed-loop system for small-scale applications of solar energy. “We can have some energy set aside locally, right in the panel, so that when you need it, you can get it,” says Jiang.

See Also

Other such solar panels — referred to as photovoltaic self-charging cells — have been around for a while, but the ability to provide energy continuously, rain or shine, sets Jiang’s apart.

Read more . . .

 

The Latest Bing News on:
Solar panels that can simultaneously generate power from sunlight and store power
The Latest Google Headlines on:
Solar panels that can simultaneously generate power from sunlight and store power

[google_news title=”” keyword=”solar panels that can simultaneously generate power from sunlight and store power” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Photovoltaic self-charging cells
The Latest Google Headlines on:
Photovoltaic self-charging cells

[google_news title=”” keyword=”photovoltaic self-charging cells” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
View Comment (1)

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Scroll To Top