Your friendly neighborhood hummingbirds. If drones had this combo, they would be able to maneuver better through collapsed buildings and other cluttered spaces to find trapped victims.
Purdue University researchers have engineered flying robots that behave like hummingbirds, trained by machine learning algorithms based on various techniques the bird uses naturally every day.
This means that after learning from a simulation, the robot “knows” how to move around on its own like a hummingbird would, such as discerning when to perform an escape maneuver.
Artificial intelligence, combined with flexible flapping wings, also allows the robot to teach itself new tricks. Even though the robot can’t see yet, for example, it senses by touching surfaces. Each touch alters an electrical current, which the researchers realized they could track.
“The robot can essentially create a map without seeing its surroundings. This could be helpful in a situation when the robot might be searching for victims in a dark place – and it means one less sensor to add when we do give the robot the ability to see,” said Xinyan Deng, an associate professor of mechanical engineering at Purdue.
The researchers will present their work on May 20 at the 2019 IEEE International Conference on Robotics and Automation in Montreal.
Drones can’t be made infinitely smaller, due to the way conventional aerodynamics work. They wouldn’t be able to generate enough lift to support their weight.
But hummingbirds don’t use conventional aerodynamics – and their wings are resilient. “The physics is simply different; the aerodynamics is inherently unsteady, with high angles of attack and high lift. This makes it possible for smaller, flying animals to exist, and also possible for us to scale down flapping wing robots,” Deng said.
Researchers have been trying for years to decode hummingbird flight so that robots can fly where larger aircraft can’t. In 2011, the company AeroVironment, commissioned by DARPA, an agency within the U.S. Department of Defense, built a robotic hummingbird that was heavier than a real one but not as fast, with helicopter-like flight controls and limited maneuverability. It required a human to be behind a remote control at all times.
Deng’s group and her collaborators studied hummingbirds themselves for multiple summers in Montana. They documented key hummingbird maneuvers, such as making a rapid 180-degree turn, and translated them to computer algorithms that the robot could learn from when hooked up to a simulation.
Further study on the physics of insects and hummingbirds allowed Purdue researchers to build robots smaller than hummingbirds – and even as small as insects – without compromising the way they fly. The smaller the size, the greater the wing flapping frequency, and the more efficiently they fly, Deng says.
The robots have 3D-printed bodies, wings made of carbon fiber and laser-cut membranes. The researchers have built one hummingbird robot weighing 12 grams – the weight of the average adult magnificent hummingbird – and another insect-sized robot weighing 1 gram. The hummingbird robot can lift more than its own weight, up to 27 grams.
Designing their robots with higher lift gives the researchers more wiggle room to eventually add a battery and sensing technology, such as a camera or GPS. Currently, the robot needs to be tethered to an energy source while it flies – but that won’t be for much longer, the researchers say.
The robots could fly silently just as a real hummingbird does, making them more ideal for covert operations. And they stay steady through turbulence, which the researchers demonstrated by testing the dynamically scaled wings in an oil tank.
The robot requires only two motors and can control each wing independently of the other, which is how flying animals perform highly agile maneuvers in nature.
“An actual hummingbird has multiple groups of muscles to do power and steering strokes, but a robot should be as light as possible, so that you have maximum performance on minimal weight,” Deng said.
Robotic hummingbirds wouldn’t only help with search-and-rescue missions, but also would allow biologists to study hummingbirds more reliably in their natural environment through the senses of a realistic robot.
“We learned from biology to build the robot, and now biological discoveries can happen with extra help from robots,” Deng said.
Simulations of the technology are available open-source at https://github.com/purdue-biorobotics/flappy.
Learn more: Hummingbird robot using AI to go soon where drones can’t
The Latest on: Flying robots
[google_news title=”” keyword=”flying robots” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Flying robots
- Flying robot uses beetle’s unique mechanism for takeoff, mid-air stabilityon August 5, 2024 at 12:07 am
According to the team, the research offers insights into insect locomotion and micro-scale robot design. Flying insects’ wings are fragile yet essential for activities like evading predators, foraging ...
- Watch a Little Robot Flap Its Wings Like a Rhinoceros Beetleon August 4, 2024 at 5:41 pm
A teeny robot designed to replicate the wing dynamics of rhinoceros beetles could be well-suited for search-and-rescue missions, as well as spying on real insects, according to researchers at ...
- Mecha Break is already flying on Steam as multiplayer playtest beginson August 2, 2024 at 5:01 pm
It’s a great time to be a fan of big robots and mechs alike. Elden Ring creator FromSoftware proved that there’s still plenty of life in the genre with Armored Core 6, and now another of the biggest ...
- This beetle-inspired robot achieves improved flight with passive wing mechanismson August 2, 2024 at 4:54 am
Researchers have discovered how rhinoceros beetles use a passive method to deploy and retract their wings, a finding that could enhance the design of flying micromachines. This study, published in ...
- Science Quiz: Fraudulent Robots and Flying Spiderson August 1, 2024 at 5:00 pm
Test your science knowledge with this weekly news quiz! We’d love to hear from you! E-mail us at [email protected] to share your experience.
- A Massively Strong Beetle Just Inspired a Lightweight Flying Roboton August 1, 2024 at 12:25 pm
The research could lead to flapping robot designs for search and rescue operations or environmental, agricultural, and military monitoring.
- Beetle-inspired robots show improved flight capabilitieson August 1, 2024 at 4:28 am
An analysis of how rhinoceros beetles deploy and retract their hindwings shows that the process is passive, requiring no muscular activity. The findings, reported in Nature, could help improve the ...
- Beetle mania: How bugs are inspiring the next gen of robot aviatorson August 1, 2024 at 2:30 am
Deploying and folding wings without power might be useful in a tight spot The rhinoceros beetle turns out to be an unlikely source of engineering inspiration for tiny flying robots that can fold their ...
- Epson IMU Used for Free-Flying Camera Robot on the International Space Stationon July 31, 2024 at 11:17 pm
Recently an inertial measurement unit (IMU) from Epson's M-G370 series was selected by the Japan Aerospace Exploration Agency (JAXA) for use in a mobile camera robot deployed on "Kibo", the Japanese ...
- Light-weight solar-powered flying robots are comingon July 17, 2024 at 9:39 am
Researchers have developed very lightweight solar-powered flying robots in a bid to overcome the limitations of small-scale drone flyers. Weighing just 4.21 grams — roughly the same as a sugar cube — ...
via Bing News