This image illustrates the brain regions in which differences were seen in people at clinical high risk who later developed psychosis. The darker blue areas indicate the more important brain regions for differentiating between the two main groups (healthy and those at clinical high risk who later developed psychosis).
CREDIT: 2024 Zhu et al./Molecular Psychiatry
Brain images from thousands of people worldwide have been used to create a machine learning-based classifier that could aid early diagnosis
The onset of psychosis can be predicted before it occurs, using a machine-learning tool which can classify MRI brain scans into those who are healthy and those at risk of a psychotic episode. An international consortium including researchers from the University of Tokyo, used the classifier to compare scans from over 2,000 people from 21 global locations. About half of the participants had been identified as being clinically at high risk of developing psychosis. Using training data, the classifier was 85% accurate at differentiating between people who were not at risk and those who later experienced overt psychotic symptoms. Using new data, it was 73% accurate. This tool could be helpful in future clinical settings, as while most people who experience psychosis make a full recovery, earlier intervention typically leads to better outcomes with less negative impact on people’s lives.
Anyone might experience a psychotic episode, which commonly involves delusions, hallucinations or disorganized thinking. There is no single cause, but it can be triggered by illness or injury, trauma, drug or alcohol use, medication, or a genetic predisposition. Although it can be scary or unsettling, psychosis is treatable and most people recover. As the most common age for a first episode is during adolescence or early adulthood, when the brain and body are undergoing a lot of change, it can be difficult to identify young people in need of help.
“At most only 30% of clinical high-risk individuals later have overt psychotic symptoms, while the remaining 70% do not,” explained Associate Professor Shinsuke Koike from the Graduate School of Arts and Sciences at the University of Tokyo. “Therefore, clinicians need help to identify those who will go on to have psychotic symptoms using not only subclinical signs, such as changes in thinking, behavior and emotions, but also some biological markers.”
The consortium of researchers have worked together to create a machine-learning tool which uses brain MRI scans to identify people at risk of psychosis before it starts. Previous studies using brain MRI have suggested that structural differences occur in the brain after the onset of psychosis. However, this is reportedly the first time that differences in the brains of those who are at very high risk but have not yet experienced psychosis have been identified.
The team from 21 different institutions in 15 different countries gathered a large and diverse group of adolescent and young adult participants. According to Koike, MRI research into psychotic disorders can be challenging because variations in brain development and in MRI machines make it difficult to get very accurate, comparable results. Also, with young people, it can be difficult to differentiate between changes that are taking place because of typical development and those due to mental illness.
“Different MRI models have different parameters which also influence the results,” explained Koike. “Just like with cameras, varied instruments and shooting specifications create different images of the same scene, in this case the participant’s brain. However, we were able to correct for these differences and create a classifier which is well tuned to predicting psychosis onset.”
The participants were divided into three groups of people at clinical high risk: those who later developed psychosis; those who didn’t develop psychosis; and people with uncertain follow-up status (1,165 people in total for all three groups), and a fourth group of healthy controls for comparison (1,029 people). Using the scans, the researchers trained a machine-learning algorithm to identify patterns in the brain anatomy of the participants. From these four groups, the researchers used the algorithm to classify participants into two main groups of interest: healthy controls and those at high risk who later developed overt psychotic symptoms.
In training, the tool was 85% accurate at classifying the results, while in the final test using new data it was 73% accurate at predicting which participants were at high risk of psychosis onset. Based on the results, the team considers that providing brain MRI scans for people identified as being at clinically high risk may be helpful for predicting future psychosis onset.
“We still have to test whether the classifier will work well for new sets of data. Since some of the software we used is best for a fixed data set, we need to build a classifier that can robustly classify MRIs from new sites and machines, a challenge which a national brain science project in Japan, called Brain/MINDS Beyond, is now taking on,” said Koike. “If we can do this successfully, we can create more robust classifiers for new data sets, which can then be applied to real-life and routine clinical settings.”
Original Article: Predicting psychosis before it occurs
More from: University of Tokyo
The Latest Updates from Bing News
Go deeper with Bing News on:
Predicting psychosis
- Discrepancies between brain regions could help predict risk of psychosis, study finds
Gene deletion is known to lead to heart defects and immune malfunction in their carriers. Discrepancies between brain regions linked to a common gene ...
- Brain Coupling May Predict Psychosis
Individuals with the 22q11.2DS genetic deletion show unique patterns of brain activity and structure, which could predict their risk of psychosis.
- An over- or under-synchronized brain may predict psychosis
Is it possible to assess an individual's risk of psychosis? Identifying predictive markers is a key challenge in psychiatry. A team from the University of Geneva (UNIGE), part of the Synapsy Center ...
- Psychosis News and Research
Children who experience chronic lack of sleep from infancy may be at increased risk of developing psychosis in early adulthood, new research shows. Case study details a 27-year-old woman with ...
- Prodromal Psychosis: Unraveling the Impact of Symptom Onset on Cognition
subgroup analyses still identified cognitive function as predicting eventual conversion risk in the long DUPrS group, with 28 patients progressing to psychosis. In these individuals, impaired ...
Go deeper with Bing News on:
AI prediction
- Google Unveils AI for Quicker, More Affordable Weather Forecasts
Researchers at Google have developed a new weather prediction model that integrates artificial intelligence (AI) with traditional methods.
- Scientists create AI model that rivals top methods for weather and climate forecasts
A machine learning model capable of both accurate weather predictions and climate simulations was published in Nature this week. The model, named NeuralGCM, outperforms some existing weather and ...
- How AI will revolutionise the accuracy of the weather forecast
On a screen in the headquarters of the European Centre for Medium-Range Weather Forecasts (ECMWF), in Reading, a batch of unassuming pixels trails along a map of the United States. At first yellow, ...
- And the Winner Is: We Got AI Models to Predict the Next President
ChatGPT, Grok, Claude AI, and Venice AI gave their takes on who would win in a hypothetical head-to-head matchup.
- Prediction: This AI Stock Will Be the Best Performer the Rest of 2024
NVIDIA gets all the AI attention, but another company's stock may be the best peformer through the remainder of the year.