The best of two worlds: Solar hydrogen production breakthrough

SolarHydrogen
When light hits the system, an electrical potential builds up. The metal oxide layer acts as a photo anode and is the site of oxygen formation. It is connected to the solar cell by way of a conducting bridge made of graphite (black). Since only the metal oxide layer is in contact with the electrolyte, the silicon solar cell remains safe from corrosion. A platinum spiral serves as the cathode where hydrogen is formed. Image: TU Delft

“We’ve just created a cost-effective, highly stable, and highly efficient solar fuel device.”

Using a simple solar cell and a photo anode made of a metal oxide, HZB and  TU Delft scientists have successfully stored nearly 5% of solar energy chemically in the form of hydrogen. This is a major feat as the design of the solar cell is much simpler than that of the high-efficiency triple-junction cells based on amorphous silicon or expensive III-V semiconductors that are traditionally used for this purpose. The photo anode, which is made from the metal oxide bismuth vanadate (BiVO4) to which a small amount of tungsten atoms was added, was sprayed onto a piece of conducting glass and coated with an inexpensive cobalt phosphate catalyst.

“Basically, we combined the best of both worlds,” explains Prof. Dr. Roel van de Krol, head of the HZB Institute for Solar Fuels: “We start with a chemically stable, low cost metal oxide, add a really good but simple silicon-based thin film solar cell, and—voilà—we’ve just created a cost-effective, highly stable, and highly efficient solar fuel device.”

Thus the experts were able to develop a rather elegant and simple system for using sunlight to split water into hydrogen and oxygen. This process, called artificial photosynthesis, allows solar energy to be stored in the form of hydrogen. The hydrogen can then be used as a fuel either directly or in the form of methane, or it can generate electricity in a fuel cell. One rough estimate shows the potential inherent in this technology: At a solar performance in Germany of roughly 600 Watts per square meter, 100 square meters of this type of system is theoretically capable of storing 3 kilowatt hours of energy in the form of hydrogen in just one single hour of sunshine. This energy could then be available at night or on cloudy days.

Read more . . .

See Also

 

 

The Latest Bing News on:
Solar hydrogen production
The Latest Google Headlines on:
Solar hydrogen production

[google_news title=”” keyword=”Solar hydrogen production” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Solar fuel device
The Latest Google Headlines on:
Solar fuel device

[google_news title=”” keyword=”solar fuel device” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top