Now Reading
Additive manufacturing: A printed smile

Additive manufacturing: A printed smile

via 3dprint.com
via 3dprint.com
A SET of straight and gleaming teeth makes for a beautiful smile. But how many people who have undergone a little dental maintenance know that they may have inside their mouths some of the first products of a new industrial revolution? Tens of millions of dental crowns, bridges and orthodontic braces have now been produced with the help of additive manufacturing, popularly known as 3D printing. Forget the idea of hobbyists printing off small plastic trinkets at home. Industrial 3D printers, which can cost up to $1m, are changing manufacturing.

The business of dentures shows how. For the metal bits in false teeth, dentists have long relied upon a process called “investment casting”. This involves creating an individual model of a person’s tooth, often in wax, enclosing it in a ceramic casing, melting out the wax and then pouring molten metal into the cavity left behind. When the cast is split open, the new metal tooth is removed. It is fiddly, labour-intensive and not always accurate; then again the casting method is some 5,000 years old.

Things are done differently at an industrial unit in Miskin, near Cardiff, set up by Renishaw, a British engineering company. The plant is equipped with three of the firm’s 3D printers; more will be added soon. Each machine produces a batch of more than 200 dental crowns and bridges from digital scans of patients’ teeth. The machines use a laser to steadily melt successive layers of a cobalt-chrome alloy powder into the required shapes. The process is a bit like watching paint dry—it can take eight to ten hours—but the printers run unattended and make each individual tooth to a design that is unique to every patient. Once complete, the parts are shipped to dental laboratories all over Europe where craftsmen add a layer of porcelain. Some researchers are now working on 3D printing the porcelain, too.

Say “ah”

The mouth is not the only bodily testing-ground for 3D-printed products. Figures gleaned by Tim Caffrey of Wohlers Associates, an American consultancy that tracks additive manufacturing, show that more than 60m custom-shaped hearing-aid shells and earmoulds have been made with 3D printers since 2000. Hundreds of thousands of people have been fitted with 3D-printed orthopaedic implants, from hip-replacement joints to titanium jawbones, as well as various prosthetics. An untold number have benefited from more accurate surgery carried out using 3D-printed surgical guides; around 100,000 knee replacements are now performed this way every year.

That the health-care industry has so swiftly adopted additive manufacturing should be no surprise. People come in all shapes and sizes, so the ability of a 3D printer to offer customised production is a boon. The machines run on computer-aided design (CAD) software, which instructs a printer to build up objects from successive layers of material; a medical scan in effect functions as your CAD file. And software is faster and cheaper to change than tools used in a traditional factory, which is designed to churn out identical products.

Learn more: Additive manufacturing: A printed smile

 

 

See Also

The Latest on: Additive manufacturing

[google_news title=”” keyword=”Additive manufacturing” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Additive manufacturing

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top