Zoomable Holograms Pave the Way for Versatile, Portable Projectors

These two still photos show the same holographic image. In the second photo the image has been magnified by the lensless projector. Credit: Tomoyoshi Shimobaba, Chiba University and Michal Makowski, Warsaw University of Technology

New techniques magnify images without requiring bulky zoom lenses

Imagine giving a presentation to a roomful of important customers when suddenly the projector fails. You whip out your smartphone, beam your PowerPoint presentation onto the conference room screen, and are back in business within seconds. This career-saving application and others like it are the promise of a new generation of ultra-small projectors. Now researchers from Japan and Poland have taken an important step toward making such devices more versatile and easier to integrate into portable electronic devices.

The team has created a small holographic projection system with a lensless zoom function. When fully developed the system should be cheaper and smaller than other projection systems. The researchers report their findings in a paper published today in the Optical Society’s (OSA) journal Optics Express.

Zoom functions magnify an image to fit on an arbitrarily sized screen, but they typically require complicated lenses and mechanical components. “A zoom lens in general projectors occupies a large area in the systems,” said Tomoyoshi Shimobaba, a professor in the graduate school of engineering at Chiba University in Japan. “If I remove the zoom lens, the system will be small and cost-saving.”

Though the new holographic lensless zoom is not the first lensless zoom system to be developed, Shimobaba notes that other systems require extra components. His team’s system requires only a laser and an LCD panel.

In order to achieve a lensless zoom, Shimobaba, his colleagues from Chiba University, and Michal Makowski from the Warsaw University of Technology in Poland turned to holography. Holography is a way to produce images by using the interference pattern of two laser beams to encode and later display the image. By their nature holograms operate without lenses. It is possible to represent a holographic image with numbers and formulas and then calculate how that image can be magnified.

Read more . . .

See Also

 

 

Go deeper with Bing News on:
Zoomable Holograms
Go deeper with Google Headlines on:
Zoomable Holograms

[google_news title=”” keyword=”Zoomable Holograms” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]

Go deeper with Bing News on:
Holograms
Go deeper with Google Headlines on:
Holograms

[google_news title=”” keyword=”holograms” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top