Using light to convert a polymer material from a rigid substance to a softer one that can heal itself when damaged

The instrument, a rheometer, can measure mechanical properties of materials. The blue-colored gel on the stage of the instrument is the materials. The rheometer is used to measure the modulus of the material, thus gaining an understanding of its stiffness and degree of dynamics.
Image: Felice Frankel
New material reversibly changes its structure in response to different wavelengths of light.

MIT researchers have designed a polymer material that can change its structure in response to light, converting from a rigid substance to a softer one that can heal itself when damaged.

“You can switch the material states back and forth, and in each of those states, the material acts as though it were a completely different material, even though it’s made of all the same components,” says Jeremiah Johnson, an associate professor of chemistry at MIT, a member of MIT’s Koch Institute for Integrative Cancer Research and the Program in Polymers and Soft Matter, and the leader of the research team.

The material consists of polymers attached to a light-sensitive molecule that can be used to alter the bonds formed within the material. Such materials could be used to coat objects such as cars or satellites, giving them the ability to heal after being damaged, though such applications are still far in the future, Johnson says.

The lead author of the paper, which appears in the July 18 issue of Nature, is MIT graduate student Yuwei Gu. Other authors are MIT graduate student Eric Alt, MIT assistant professor of chemistry Adam Willard, and Heng Wang and Xiaopeng Li of the University of South Florida.

Controlled structure

Many of the properties of polymers, such as their stiffness and their ability to expand, are controlled by their topology — how the components of the material are arranged. Usually, once a material is formed, its topology cannot be changed reversibly. For example, a rubber ball remains elastic and cannot be made brittle without changing its chemical composition.

In this paper, the researchers wanted to create a material that could reversibly switch between two different topological states, which has not been done before.

Johnson and his colleagues realized that a type of material they designed a few years ago, known as polymer metal-organic cages, or polyMOCs, was a promising candidate for this approach. PolyMOCs consist of metal-containing, cage-like structures joined together by flexible polymer linkers. The researchers created these materials by mixing polymers attached to groups called ligands, which can bind to a metal atom.

Each metal atom — in this case, palladium — can form bonds with four ligand molecules, creating rigid cage-like clusters with varying ratios of palladium to ligand molecules. Those ratios determine the size of the cages.

In the new study, the researchers set out to design a material that could reversibly switch between two different-sized cages: one with 24 atoms of palladium and 48 ligands, and one with three palladium atoms and six ligand molecules.

To achieve that, they incorporated a light-sensitive molecule called DTE into the ligand. The size of the cages is determined by the angle of bonds that a nitrogen molecule on the ligand forms with palladium. When DTE is exposed to ultraviolet light, it forms a ring in the ligand, which increases the size of the angle at which nitrogen can bond to palladium. This makes the clusters break apart and form larger clusters.

When the researchers shine green light on the material, the ring is broken, the bond angle becomes smaller, and the smaller clusters re-form. The process takes about five hours to complete, and the researchers found they could perform the reversal up to seven times; with each reversal, a small percentage of the polymers fails to switch back, which eventually causes the material to fall apart.

When the material is in the small-cluster state, it becomes up to 10 times softer and more dynamic. “They can flow when heated up, which means you could cut them and upon mild heating that damage will heal,” Johnson says.

This approach overcomes the tradeoff that usually occurs with self-healing materials, which is that structurally they tend to be relatively weak. In this case, the material can switch between the softer, self-healing state and a more rigid state.

“Reversibly switching topology of polymer networks has never been reported before and represents a significant advancement in the field,” says Sergei Sheiko, a professor of chemistry at the University of North Carolina, who was not involved in the research. “Without changing network composition, photoswitchable ligands enable remotely activated transition between two topological states possessing distinct static and dynamic properties.”

Self-healing materials

In this paper, the researchers used the polymer polyethylene glycol (PEG) to make their material, but they say this approach could be used with any kind of polymer. Potential applications include self-healing materials, although for this approach to be widely used, palladium, a rare and expensive metal, would likely have to be replaced by a cheaper alternative.

“Anything made from plastic or rubber, if it could be healed when it was damaged, then it wouldn’t have to be thrown away. Maybe this approach would provide materials with longer life cycles,” Johnson says.

See Also

Another possible application for these materials is drug delivery. Johnson believes it could be possible to encapsulate drugs inside the larger cages, then expose them to green light to make them open up and release their contents. Applying green light could enable recapture of the drugs, providing a novel approach to reversible drug delivery.

The researchers are also working on creating materials that can reversibly switch from a solid state to a liquid state, and on using light to create patterns of soft and rigid sections within the same material.

Learn more: Light-controlled polymers can switch between sturdy and soft

 

 

The Latest on: Photoswitchable materials

[google_news title=”” keyword=”photoswitchable materials” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Photoswitchable materials
  • Painting Tools and Materials
    on May 21, 2024 at 7:40 pm

    Subscribe to our newsletters for the best tips, tricks, and ideas to transform your home and yard.

  • Materials Advances
    on May 19, 2024 at 6:56 am

    Materials Advances published a number of themed collections every year on timely and important topics, guest edited by members of the materials science community. Previous themed collections are ...

  • 12 types of roofing materials: Guide to choosing the best ones for you
    on May 8, 2024 at 5:00 pm

    The type of roofing material you select can have a big impact on your home’s appearance, energy efficiency and ability to withstand the elements. In general, asphalt shingles make up the ...

  • News tagged with solid materials
    on May 6, 2024 at 4:59 pm

    Published in Advanced Materials, the study explores new findings on the transportation ... Scientists have discovered that a "single atomic defect" in a layered 2D material can hold onto quantum ...

  • Meta Materials Announces Workforce Reduction
    on May 3, 2024 at 6:05 am

    HALIFAX, NS / ACCESSWIRE / May 3, 2024 / Meta Materials Inc. (the "Company" or "META") (NASDAQ:MMAT), an advanced materials and nanotechnology company, today announced that the Company's Board of ...

  • 10 Top Materials Stocks Of May 2024
    on May 2, 2024 at 5:11 am

    Commissions do not affect our editors' opinions or evaluations. Materials like metal, concrete and chemicals are the foundation of the global economy—every sector requires basic materials ...

  • Graphene at 20: why the ‘wonder material’ is finally coming good
    on April 29, 2024 at 5:00 pm

    Strong, light and with amazing electronic properties, graphene has always been touted as the “wonder material”. But two decades after it was first isolated, James McKenzie believes the graphene is ...

  • Scientists discover breakthrough material that can store greenhouse gases faster than trees
    on April 29, 2024 at 6:48 am

    Scientists have hailed the “exciting” discovery of a type of porous material that can store carbon dioxide. The research, published in the journal Nature Synthesis, saw a team led by ...

  • Local Materials: The Latest Architecture and News
    on April 27, 2024 at 5:00 pm

    However, the locality of the materials used is a significant factor that gives homes their character. It conveys a sense of place, culture, construction history, and local craftsmanship.

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top