Now Reading
UGA researchers use nanoparticles to fight cancer

UGA researchers use nanoparticles to fight cancer

Shanta Dhar, right, and Sean Marrache work in Dhar’s NanoTherapeutics Research Laboratory at UGA.

Researchers at the University of Georgia are developing a new treatment technique that uses nanoparticles to reprogram immune cells so they are able to recognize and attack cancer.

The findings were published recently in the early online edition of ACS Nano.

The human body operates under a constant state of martial law. Chief among the enforcers charged with maintaining order is the immune system, a complex network that seeks out and destroys the hordes of invading bacteria and viruses that threaten the organic society as it goes about its work.

The immune system is good at its job, but it’s not perfect. Most cancerous cells, for example, are able to avoid detection by the immune system because they so closely resemble normal cells, leaving the cancerous cells free to multiply and grow into life-threatening tumors while the body’s only protectors remain unaware.

Shanta Dhar and her colleagues are giving the immune system a boost through their research.

“What we are working on is specifically geared toward breast cancer,” said Dhar, the study’s co-author and an assistant professor of chemistry in the UGA Franklin College of Arts and Sciences. “Our paper reports for the first time that we can stimulate the immune system against breast cancer cells using mitochondria-targeted nanoparticles and light using a novel pathway.”

In their experiments, Dhar and her colleagues exposed cancer cells in a petri dish to specially designed nanoparticles 1,000 times finer than the width of a human hair. The nanoparticles invade the cell and penetrate the mitochondria—the organelles responsible for producing the energy a cell needs to grow and replicate.

They then activated the nanoparticles inside the cancer cells by exposing them to a tissue-penetrating long wavelength laser light. Once activated, the nanoparticles disrupt the cancer cell’s normal processes, eventually leading to its death.

The dead cancer cells were collected and exposed to dendritic cells, one of the core components of the human immune system. What the researchers saw was remarkable.

“We are able to potentially overcome some of the traditional drawbacks to today’s dendritic cell immunotherapy,” said Sean Marrache, a graduate student in Dhar’s lab. “By targeting nanoparticles to the mitochondria of cancer cells and exposing dendritic cells to these activated cancer cells, we found that the dendritic cells produced a high concentration of chemical signals that they normally don’t produce, and these signals have traditionally been integral to producing effective immune stimulation.”

See Also

Dhar added that the “dendritic cells recognized the cancer as something foreign and began to produce high levels of interferon-gamma, which alerts the rest of the immune system to a foreign presence and signals it to attack. We basically used the cancer against itself.”

Read more . . .

 

 

The Latest Bing News on:
Nanoparticles to fight cancer
The Latest Google Headlines on:
Nanoparticles to fight cancer

[google_news title=”” keyword=”Nanoparticles to fight cancer” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Nanoparticles to reprogram immune cells
The Latest Google Headlines on:
Nanoparticles to reprogram immune cells

[google_news title=”” keyword=”nanoparticles to reprogram immune cells” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top