Now Reading
Synthesizing biodegradable plastic materials using sunlight and CO2!

Synthesizing biodegradable plastic materials using sunlight and CO2!

Visible light-driven 3-hydroxybutyrate production from acetone and CO2. Utilizing sunlight and biocatalysts, Osaka Metropolitan University scientists synthesized 3-hydroxybutyrate, a biodegradable plastic material, from acetone and CO2. Mimicking natural photosynthesis, the team artificially reproduced a light reaction, which involves sunlight, and a dark reaction, which fixes CO2.
Visible light-driven 3-hydroxybutyrate production from acetone and CO2. Utilizing sunlight and biocatalysts, Osaka Metropolitan University scientists synthesized 3-hydroxybutyrate, a biodegradable plastic material, from acetone and CO2. Mimicking natural photosynthesis, the team artificially reproduced a light reaction, which involves sunlight, and a dark reaction, which fixes CO2.

Visible light-driven 3-hydroxybutyrate production from acetone and CO2. Utilizing sunlight and biocatalysts, Osaka Metropolitan University scientists synthesized 3-hydroxybutyrate, a biodegradable plastic material, from acetone and CO2. Mimicking natural photosynthesis, the team artificially reproduced a light reaction, which involves sunlight, and a dark reaction, which fixes CO2.

Osaka Metropolitan University scientists achieved an 80% conversion yield of a biodegradable plastic material from acetone and CO2, tackling the plastic waste crisis while moving toward carbon neutrality.

Tremendous effort has been put into making plastics not only durable and convenient but also environmentally-friendly materials for everyday products. Osaka Metropolitan University scientists made a significant advance in this journey with their innovative artificial photosynthesis technology that produces biodegradable plastics from acetone and CO2, addressing the plastic waste crisis while moving toward the goal of carbon neutrality. Their findings were published in Chemical Communications.

The research team led by Professor Yutaka Amao from the Research Center for Artificial Photosynthesis at Osaka Metropolitan University has successfully synthesized 3-hydroxybutyrate, a raw material for poly-3-hydroxybutyrate (PHB)—a strong water-insoluble polyester used for packaging materials—from acetone and CO2. With a visible light-driven catalytic system utilizing sunlight and two biocatalysts, the researchers achieved a yield of about 80%.

 

Original Article: 80% yield! Success in synthesizing biodegradable plastic materials using sunlight and CO2!

More from: Osaka Metropolitan University 

See Also

 

 

The Latest Updates from Bing News

Go deeper with Bing News on:
Biodegradable plastic
Go deeper with Bing News on:
Plastic from CO2 and sunlight
What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top