Super-slick material makes steel better, stronger, cleaner

The steel is prone to the corrosive effects of water, salt and organisms. Now, researchers have demonstrated a way to make steel stronger, safer and more ...
The steel is prone to the corrosive effects of water, salt and organisms. Now, researchers have demonstrated a way to make steel stronger, safer and more …

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have demonstrated a way to make steel stronger, safer and more durable. Their new surface coating, made from rough nanoporous tungsten oxide, is the most durable to date, capable of repelling any kind of liquid even after sustaining intense structural abuse.

Steel is ubiquitous in our daily lives. We cook in stainless steel skillets, ride steel subway cars over steel rails to our offices in steel-framed building. Steel screws hold together broken bones, steel braces straighten crooked teeth, steel scalpels remove tumors. Most of the goods we consume are delivered by ships and trucks mostly built of steel.

While various grades of steel have been developed over the past 50 years, steel surfaces have remained largely unchanged — and unimproved. The steel of today is as prone as ever to the corrosive effects of water and salt and abrasive materials such as sand. Steel surgical tools can still carry microorganisms that cause deadly infections.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have demonstrated a way to make steel stronger, safer and more durable. Their new surface coating, made from rough nanoporous tungsten oxide, is the most durable anti-fouling and anti-corrosive material to date, capable of repelling any kind of liquid even after sustaining intense structural abuse.

The new material joins the portfolio of other non-stick, anti-fouling materials developed in the lab of Joanna Aizenberg, the Amy Smith Berylson Professor of Materials Science and core faculty member of the Wyss Institute for Biologically Inspired Engineering at Harvard University. Aizenberg’s team developed Slippery Liquid-Infused Porous Surfaces in 2011 and since then has demonstrated a broad range of applications for the super-slick coating, known as SLIPS. The new SLIPS-enhanced steel is described in Nature Communications.

“Our slippery steel is orders of magnitude more durable than any anti-fouling material that has been developed before,” said Aizenberg.

“So far, these two concepts – mechanical durability and anti-fouling – were at odds with each other. We need surfaces to be textured and porous to impart fouling resistance but rough nanostructured coatings are intrinsically weaker than their bulk analogs. This research shows that careful surface engineering allows the design of a material capable of performing multiple, even conflicting, functions, without performance degradation.”

The material could have far-ranging applications and avenues for commercialization, including non-fouling medical tools and devices, such as implants and scalpels, nozzles for 3D printing and, potentially, larger-scale applications for buildings and marine vessels.

Read more: Super-slick material makes steel better, stronger, cleaner

 

 

The Latest on: Anti-fouling and anti-corrosive material

[google_news title=”” keyword=”anti-fouling and anti-corrosive material” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Anti-fouling and anti-corrosive material

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top