Study Findings Offer A Promising New Direction for Organ Regeneration and Tissue Repair

300px-VEGF_receptors
VEGF receptors and ligands (Photo credit: Wikipedia)

Researchers identify a novel approach to enhance tissue growth

STUDY FINDINGS OFFER PROMISING NEW DIRECTION FOR ORGAN REGENERATION AND TISSUE REPAIR

Because most human tissues do not regenerate spontaneously, advances in tissue repair and organ regeneration could benefit many patients with a wide variety of medical conditions.

Now a research team led by investigators at Beth Israel Deaconess Medical Center (BIDMC) and Dana-Farber/Boston Children’s Cancer and Blood Disorders Center has identified an entirely new approach to enhance normal tissue growth, a finding that could have widespread therapeutic applications.

Their findings were published on-line this week in the Proceedings of the National Academy of Sciences (PNAS).

Tissue regeneration is a process that is not fully understood, but previous research has demonstrated that endothelial cells lining the insides of small blood vessels play a key role in tissue growth. It is also known that these endothelial cells generate chemical messengers called epoxyeicosatrienoic acids (EETs), which stimulate blood vessel formation in response to tissue injury.

In this new research, first author Dipak Panigrahy, MD, an investigator in BIDMC’s Center for Vascular Biology Research, and his colleagues wanted to find out how EETs might participate in organ and tissue regeneration. To answer this question, they created seven different mouse models. The models focused on liver, kidney and lung regeneration; wound healing; corneal vascularization; and retinal vascularization.

“We used genetic and pharmacologic tools to manipulate EET levels in the animals to show that EETs play a critical role in accelerating tissue growth, providing the first in vivo demonstration that pharmacological modulation of EETs can affect organ regeneration,” explains Panigrahy, an Instructor in Pathology at Harvard Medical School. Administering synthetic EETs spurred tissue growth in the research models; conversely, lowering EET levels – by either manipulating genes or administering drugs – delayed tissue regeneration.

The team also demonstrated that proteins called soluble epoxide hydrolase (sEH) inhibitors, known to elevate EET levels, promoted liver and lung regeneration. (sEH is the main metabolizing enzyme of EETs.)

“Our results offer a mechanistic rationale for evaluating sEH inhibitors as novel therapeutics for a number of human diseases such as hepatic insufficiency after liver damage and diseases characterized by immature lung development, such as bronchopulmonary dysplasia,” says Panigrahy, adding that the use of topical sEH inhibitors on the skin might also be useful for the acceleration of wound healing.

The researchers suspected that EETs were stimulating tissue regeneration by way of blood vessel formation, specifically by producing vascular endothelial growth factor (VEGF) to promote vessel growth. As predicted, when the investigators depleted VEGF in the mice, EETs’ effects on organ regeneration disappeared.

See Also

“Discovering EETs’ role could be of critical importance to help control the repair of liver, lungs and kidneys,” says senior author Mark Kieran, MD, PhD, of the Division of Pediatric Oncology at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center. “Since diseases of these organs are a major cause of morbidity and mortality in the North American population, the opportunity to modulate the regeneration of healthy tissue could have significant therapeutic implications for many patients.” These findings may also apply to conditions or physical defects that lead to the loss of specialized cells in other organ systems, such as the nervous system and the immune system.

Read more . . .

 

 

The Latest Bing News on:
Organ Regeneration
The Latest Google Headlines on:
Organ Regeneration

[google_news title=”” keyword=”Organ Regeneration” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Tissue repair
The Latest Google Headlines on:
Tissue repair

[google_news title=”” keyword=”tissue repair” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top