Shading Earth: Delivering Solar Geoengineering Materials to Combat Global Warming May Be Feasible and Affordable

The basic feasibility of SRM with current technology is still being disputed

A cost analysis of the technologies needed to transport materials into the stratosphere to reduce the amount of sunlight hitting Earth and therefore reduce the effects of global climate change has shown that they are both feasible and affordable.

Published August 31, 2012, in IOP Publishing‘s journal Environmental Research Letters, the study has shown that the basic technology currently exists and could be assembled and implemented in a number of different forms for less than USD $5 billion a year.
Put into context, the cost of reducing carbon dioxide emissions is currently estimated to be between 0.2 and 2.5 per cent of GDP in the year 2030, which is equivalent to roughly USD $200 to $2000 billion.
Solar radiation management (SRM) looks to induce the effects similar to those observed after volcanic eruptions; however, the authors state that it is not a preferred strategy and that such a claim could only be made after the thorough investigation of the implications, risks and costs associated with these issues.
The authors caution that reducing incident sunlight does nothing at all to reduce greenhouse gas concentrations in the atmosphere, nor the resulting increase in the acid content of the oceans. They note that other research has shown that the effects of solar radiation management are not uniform, and would cause different temperature and precipitation changes in different countries.
Co-author of the study, Professor Jay Apt, said: “As economists are beginning to explore the role of several types of geoengineering, it is important that a cost analysis of SRM is carried out. The basic feasibility of SRM with current technology is still being disputed and some political scientists and policy makers are concerned about unilateral action.”
In the study, the researchers, from Aurora Flight Sciences, Harvard University and Carnegie Mellon University, performed an engineering cost analysis on six systems capable of delivering 1-5 million metric tonnes of material to altitudes of 18-30 km: existing aircraft, a new airplane designed to perform at altitudes up to 30 km, a new hybrid airship, rockets, guns and suspended pipes carrying gas or slurry to inject the particles into the atmosphere.
Based on existing research into solar radiation management, the researchers performed their cost analyses for systems that could deliver around one million tonnes of aerosols each year at an altitude between 18 and 25 km and between a latitude range of 30°N and 30°S.
The study concluded that using aircraft is easily within the current capabilities of aerospace engineering, manufacturing and operations. The development of new, specialized aircraft appeared to be the cheapest option, with costs of around $1 to $2 billion a year; existing aircraft would be more expensive as they are not optimized for high altitudes and would need considerable and expensive modifications to do so.
Guns and rockets appeared to be capable of delivering materials at high altitudes but the costs associated with these are much higher than those of airplanes and airships due to their lack of reusability.

Read more . . .

via Science Daily
 

The Latest Streaming News: Solar Geoengineering updated minute-by-minute

Bookmark this page and come back often
 

See Also

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top