Now Reading
Researchers develop new-generation ‘thinking’ biomimetic robots as ocean engineering solutions

Researchers develop new-generation ‘thinking’ biomimetic robots as ocean engineering solutions

via www.damngeeky.com
via www.damngeeky.com

Latest turtle robot capable of performing more complicated tasks such as surveillance and energy harvesting, and operates on a self-charge mode

NUS Engineering researchers are closer to creating underwater robotic creatures with a brain of their own – besides behaving like the real thing. In the near future, it would not be too tall an order for the team to produce a swarm of autonomous tiny robotic sea turtles and fishes for example, to perform hazardous missions such as detecting nuclear wastes underwater or other tasks too dangerous for humans.

In the underwater robotic world, turtle robots are among the most maneuverable. The NUS team’s turtle robot, besides being maneuverable, can also go about determinedly performing what it is set out to do, while being able to react to exigencies and obstacles.

Associate Professor S K Panda leads a team of researchers at the Electrical and Computer Engineering Department who are involved in the research and development of biomimetic solutions in ocean engineering — looking towards nature for solutions to technical challenges with robots mimicking natural systems. The team is currently putting the final touches to a robotic sea turtle which could move about underwater, including diving to deeper depths vertically, like a real turtle, by just using its front and hind limb gait movements.

Explains Assoc Prof Panda, “Our turtle robot does not use a ballast system which is commonly used in underwater robots for diving or sinking functions. Without this ballast system, it is much smaller and lighter, enabling it to carry bigger payloads so that it can perform more complicated tasks such as surveillance, water quality monitoring in Singapore reservoir or energy harvesting for long endurance. Being able to do a dynamic dive or sinking vertically means that it can also enter vertical tunnels or pipes in the seabed with very small diameters.”

Being smaller and lighter would also enhance its energy efficiency. The NUS turtle robot is also able to self-charge, further reducing the need for it to return to base station for recharging. It is agile and able to turn sharp corners with small radius, without losing speed.

Added Assoc Prof Panda, “We can have a swarm of tiny turtles which communicate with each other and act collaboratively to perform their duties. With improved maneuverability they can go to tiny and narrow places like crevices where bigger vessels are unable to do so.”

Mr Abhra Roy Chowdhury who has been working towards lifelike underwater robots for the last three years for his PhD, said the team has designed and developed four other underwater prototypes – a spherical robot that mimics a puffer fish in structure but uses a jet propulsion technique similar to jellyfishes and squids; and three robotic fishes of different morphologies. These robots are scalable, modular and possess stealth (ability to avoid detection) features.

“If need be, we can actually combine all their merits in a single robot,” added Mr Chowdhury.

Read more: NUS researchers develop new-generation ‘thinking’ biomimetic robots as ocean engineering solutions

See Also

 

The Latest on: Biomimetic robots

[google_news title=”” keyword=”Biomimetic robots” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Biomimetic robots

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top