Let There Be Light: Chemists Develop Magnetically Responsive Liquid Crystals

Top: Scheme showing magnetic control over light transmittance in the novel liquid crystals. B is the alternating magnetic field. The polarized light is seen in yellow. The gray rods represent the polarizers. The magnetic field controls the orientation of the nanorods (seen in orange), which in turn affects the polarization of the light and, then, the amount of light that can pass through the polarizers. Bottom: Images show how a polarization-modulated pattern changes darkness/brightness by rotating the direction of the cross polarizers. The circles and background contain magnetic nanorods aligned at different orientations. Research by the Yin Lab at UC Riverside shows that by combining magnetic alignment and lithography processes, it is possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas. IMAGE CREDIT: YIN LAB, UC RIVERSIDE.

Top: Scheme showing magnetic control over light transmittance in the novel liquid crystals. B is the alternating magnetic field. The polarized light is seen in yellow. The gray rods represent the polarizers. The magnetic field controls the orientation of the nanorods (seen in orange), which in turn affects the polarization of the light and, then, the amount of light that can pass through the polarizers. Bottom: Images show how a polarization-modulated pattern changes darkness/brightness by rotating the direction of the cross polarizers. The circles and background contain magnetic nanorods aligned at different orientations. Research by the Yin Lab at UC Riverside shows that by combining magnetic alignment and lithography processes, it is possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas. IMAGE CREDIT: YIN LAB, UC RIVERSIDE.

The discovery has applications in signage, posters, writing tablets, billboards and anti-counterfeit technology

Chemists at the University of California, Riverside have constructed liquid crystals with optical properties that can be instantly and reversibly controlled by an external magnetic field. The research paves the way for novel display applications relying on the instantaneous and contactless nature of magnetic manipulation—such as signage, posters, writing tablets, and billboards.

Commercially available liquid crystals, used in modern electronic displays, are composed of rod-like or plate-like molecules. When an electric field is applied, the molecules rotate and align themselves along the field direction, resulting in a rapid tuning of transmitted light.

“The liquid crystals we developed are essentially a liquid dispersion, a simple aqueous dispersion of magnetic nanorods,” said Yadong Yin, an associate professor ofchemistry, who led the research project. “We use magnetic nanorods in place of the commercial nonmagnetic rod-like molecules. Optically these magnetic rods work in a similar way to commercial rod-like molecules, with the added advantage of being able to respond rapidly to external magnetic fields.”

Yin explained that upon the application of a magnetic field, the nanorods spontaneously rotate and realign themselves parallel to the field direction, and influence the transmittance of polarized light.

“Prior attempts had been limited to materials with very limited magnetic responses,” Yin said. “We utilized our expertise in colloidal nanostructure synthesis to produce magnetite nanorods that can form liquid crystals and respond strongly to even very weak magnetic fields – even a fridge magnet can operate our liquid crystals.”

Read more . . .

 

The Latest on: Magnetically Responsive Liquid Crystals

[google_news title=”” keyword=”Magnetically Responsive Liquid Crystals” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Magnetically Responsive Liquid Crystals
    Feed has no items.

via  Bing News

 

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top