Hybrid material presents potential for 4-D-printed adaptive devices

In order to create a material that is both strong and malleable and displays different behavior when exposed to more than one stimulus, researchers embedded light-responsive fibers, which are coated with spirobenzopyran (SP) chromophores, into a temperature-sensitive gel. This new material displays distinctly different behavior in the presence of light and heat. CREDIT University of Pittsburgh
In order to create a material that is both strong and malleable and displays different behavior when exposed to more than one stimulus, researchers embedded light-responsive fibers, which are coated with spirobenzopyran (SP) chromophores, into a temperature-sensitive gel. This new material displays distinctly different behavior in the presence of light and heat.
CREDIT
University of Pittsburgh
Combining photo-responsive fibers with thermo-responsive gels, researchers at the University of Pittsburgh’s Swanson School of Engineering and Clemson University have modeled a new hybrid material that could reconfigure itself multiple times into different shapes when exposed to light and heat, allowing for the creation of devices that not only adapt to their environment, but also display distinctly different behavior in the presence of different stimuli.

Computational modeling developed by Anna C. Balazs, Distinguished Professor of Chemical and Petroleum Engineering at Pitt, and Olga Kuksenok, Associate Professor of Materials Science and Engineering at Clemson, predicted these composites would be both highly reconfigurable and mechanically strong, signaling a potential for biomimetic four-dimensional printing. Their research, “Stimuli-responsive behavior of composites integrating thermo-responsive gels with photoresponsive fibers,” was recently published in the journal Materials Horizons, published by the Royal Society of Chemistry (DOI: 10.1039/C5MH00212E).

“In 4D printing, time is the fourth dimension that characterizes the structure of the material; namely, these materials can change shape even after they have been printed. The ability of a material to morph into a new shape alleviates the need to build a new part for every new application, and hence, can lead to significant cost savings,” Dr. Balazs explained. “The challenge that researchers have faced is creating a material that is both strong and malleable and displays different behavior when exposed to more than one stimulus.”

Drs Balazs and Kuksenok resolved this issue by embedding light-responsive fibers, which are coated with spirobenzopyran (SP) chromophores, into a temperature-sensitive gel. This new material displays distinctly different behavior in the presence of light and heat.

“If we anchor a sample of the composite to a surface, it will bend in one direction when exposed to light, and in the other direction when exposed to heat,” Dr. Kuksenok said. “When the sample is detached, it shrinks like an accordion when heated and curls like a caterpillar when illuminated. This programmable behavior allows a single object to display different shapes and hence functions, depending on how it is exposed to light or heat.”

The researchers note that by localizing the SP functionality specifically on the fibers, the composites can encompass “hidden” patterns that are only uncovered in the presence of light, allowing the material to be tailored in ways that would not be possible by simply heating the sample. This biomimetic, stimuli-responsive motion could allow for joints that bend and unbend with light and become an essential component for new adaptive devices, such as flexible robots.

“Robots are wonderful tools, but when you need something to examine a delicate structure, such as inside the human body, you want a “squishy” robot rather than the typical devices we think of with interlocking gears and sharp edges,” Dr. Balazs said. “This composite material could pave the way for soft, reconfigurable devices that display programmed functions when exposed to different environmental cues.”

Read more: Hybrid material presents potential for 4-D-printed adaptive devices

 

 

See Also

The Latest on: 4-D-printed adaptive devices

[google_news title=”” keyword=”4-D-printed adaptive devices” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: 4-D-printed adaptive devices
  • Diamond dust for MRI, 4D printing creates advanced devices
    on July 19, 2024 at 6:20 am

    New and exciting technologies feature in this episode of the Physics World Weekly podcast. Our first guest is the neuroscientist and physicist Jelena Lazovic Zinnanti, who recalls how she discovered ...

  • 3-D Printing News
    on July 17, 2024 at 5:00 pm

    July 2, 2024 — Researchers have developed a new two-photon polymerization technique that uses two lasers to 3D print complex high-resolution structures. The advance could make this 3D printing ...

  • What Are the Top 4D Printing Projects?
    on July 11, 2024 at 7:00 am

    D printing could be the next level for 3D printing. But how does it work? What are the current projects? We took a closer look.

  • Adaptive Behavior and Learning
    on July 9, 2024 at 5:00 pm

    Figure 4.1 shows an example of the relevant behavior ... Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ...

  • Best portable printers in 2024: Our top picks
    on July 5, 2024 at 12:46 pm

    With the WorkForce moniker, this mobile printer is sold by business equipment resellers ... measuring 15.3 x 24.4 x 10.2 inches (W x D x H) when printing and weighs 7.5 pounds.

  • Fizik One-To-One Custom 3D-Printed Saddles Use Quick GebioMized Pressure Fit: Review
    on June 19, 2024 at 9:31 am

    After hinting at the potential for individual rider customization with their first 3D-printed Adaptive saddles ... I did a GebioMized pressure map fit 4 years ago, and lowered peak pressure ...

  • New 3D printing technique integrates electronics into microchannels to create flexible, stretchable microfluidic devices
    on June 12, 2024 at 10:41 am

    These 3D systems ... device with a compact footprint (21.4 mm × 15 mm). The first demonstration underscores this solution's ability to automate the production of stretchable printed circuits ...

  • ARTS.3765 Adaptive Devices for Better Life
    on April 5, 2024 at 1:03 pm

    In this interdisciplinary course, students and professors from Art and Design and Physical Therapy and Kinesiology will collaborate with a hospital partner to create adaptive devices ... including 3D ...

  • adaptive controller
    on December 3, 2022 at 4:01 pm

    Quite a few makers try and create devices helpful to others – today ... only two headphone jacks and resistors, complete with a 3D printed case. The value is not as much in its construction ...

  • TFT35 Dual Mode 3D Print Control – Hands On
    on January 3, 2022 at 2:55 am

    I was rebuilding one of my 3D printers ... it has a 20×4 LCD. Instead of an encoder knob, there are five buttons: basically up, down, left, right, and enter. Most printers now have an LCD12864 ...

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top