Fibers That Can Hear and Sing: Fibers Created That Detect and Produce Sound

Fibers That Can Hear and Sing

For centuries, “man-made fibers” meant the raw stuff of clothes and ropes; in the information age, it’s come to mean the filaments of glass that carry data in communications networks. But to Yoel Fink, an Associate professor of Materials Science and principal investigator at MIT’s Research Lab of Electronics, the threads used in textiles and even optical fibers are much too passive. For the past decade, his lab has been working to develop fibers with ever more sophisticated properties, to enable fabrics that can interact with their environment.

In the August issue of Nature Materials, Fink and his collaborators announce a new milestone on the path to functional fibers: fibers that can detect and produce sound. Applications could include clothes that are themselves sensitive microphones, for capturing speech or monitoring bodily functions, and tiny filaments that could measure blood flow in capillaries or pressure in the brain. The paper, whose authors also include Shunji Egusa, a former postdoc in Fink’s lab, and current lab members NoĆ©mie Chocat and Zheng Wang, appeared on Nature Materials‘ website on July 11.

Ordinary optical fibers are made from a “preform,” a large cylinder of a single material that is heated up, drawn out, and then cooled. The fibers developed in Fink’s lab, by contrast, derive their functionality from the elaborate geometrical arrangement of several different materials, which must survive the heating and drawing process intact.

See Also

The heart of the new acoustic fibers is a plastic commonly used in microphones. By playing with the plastic’s fluorine content, the researchers were able to ensure that its molecules remain lopsided — with fluorine atoms lined up on one side and hydrogen atoms on the other — even during heating and drawing. The asymmetry of the molecules is what makes the plastic “piezoelectric,” meaning that it changes shape when an electric field is applied to it.

Read more . . .

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top