
via University of Texas at Austin
For significant portions of the globe faced with water shortage problems, a beacon of hope may be on the way: the ability to easily turn hot air into drinking water.
For the past few years, researchers at The University of Texas at Austin have focused on the moisture present in the air as a potential source of drinking water for drought-stressed populations. In new research published in the Proceedings of the National Academy of Sciences, they reached a significant breakthrough in their efforts to create drinkable water out of thin air: a molecularly engineered hydrogel that can create clean water using just the energy from sunlight.
The researchers were able to pull water out of the atmosphere and make it drinkable using solar energy, in conditions as low as 104 degrees, aligning with summer weather in Texas and other parts of the world. That means people in places with excess heat and minimal access to clean water could someday simply place a device outside, and it would make water for them, with no additional effort necessary.
“With our new hydrogel, we’re not just pulling water out of thin air. We’re doing it extremely fast and without consuming too much energy,” said Guihua Yu, a materials science and engineering professor in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering and Texas Materials Institute. “What’s really fascinating about our hydrogel is how it releases water. Think about a hot Texas summer — we could just use our temperatures’ natural ups and downs, no need to crank up any heaters.”
The device can produce between 3.5 and 7 kilograms of water per kilogram of gel materials, depending on humidity conditions.
A significant feature of this research is the hydrogel’s adaptability into microparticles called “microgels.” These microgels unlock the speed and efficiency improvements that bring this device much closer to reality.
“By transforming the hydrogel into micro-sized particles, we can make the water capture and release ultrafast,” said Weixin Guan, a graduate student in Yu’s lab and one of the leaders of the research. “This offers a new, highly efficient type of sorbents that can significantly enhance the water production by multiple daily cycling.”
The researchers are pursuing additional improvements to the technology, with an eye toward transforming it into a commercial product. One focus area is optimizing the engineering of the microgels to further improve efficiency.
Scaling up is an important next step. The researchers aim to translate their work into tangible and scalable solutions that can be used worldwide as a low-cost, portable method of creating clean drinking water. This could be life-changing for countries such as Ethiopia, where almost 60% of the population lacks basic access to clean water.
“We developed this device with the ultimate goal to be available to people around the world who need quick and consistent access to clean, drinkable water, particularly in those arid areas,” said Yaxuan Zhao, a graduate student in Yu’s lab.”
The team is working on other versions of the device made from organic materials, which would reduce costs for mass production. This transition to more commercially viable designs comes with its own challenges in scaling production of the sorbent that allows moisture absorption and in maintaining durability for the product’s lifespan. Research is also focused on making the devices portable for various application scenarios.
Original Article: Hot Summer Air Turns Into Drinking Water With New Gel Device
More from: University of Texas at Austin
The Latest Updates from Bing News
Go deeper with Bing News on:
Drinking water from the air
- New machine harvests water from thin air in dry environments
Earth's atmosphere has the potential to pull clean drinking water out of thin air for billions of people facing global shortages.
- The 2024 Air & Water Show takes off this weekend; here's what you need to know
Yes, in case the roar of Harleys wasn't enough this weekend, Milwaukee will also feel the roar of fighter jets as the 2024 Air & Water Show will soar up as well as splash down around the lakefront on ...
- Scientists develop device to harvest water from thin air
Imagine getting clean drinking water straight from the air, even in the driest places on Earth. This dream is becoming a reality thanks to a new device developed by researchers at the. This compact ...
- Drawing water from dry air
June 26, 2024 — Clean, safe water is a limited resource and access to it depends on local bodies of water. But even dry regions have some water vapor in the air. To harvest small amounts of humidity, ...
- Compact atmospheric water harvesting device can produce water out of thin air
Earth's atmosphere holds an ocean of water, enough liquid to fill Utah's Great Salt Lake 800 times. Extracting some of that moisture is seen as a potential way to provide clean drinking water to ...
Go deeper with Bing News on:
Microgels
- International journal of biological macromolecules
Effect of chitosan-based bio coating on mechanical, structural and physical characteristics of microfiber based paper packaging: An alternative to wood pulp/plastic packaging. The interaction ...
- Stimuli-Regulated Mechanically Interlocked Polymer Wrinkles
A recent article in Nature Communications introduced a dually cross-linked mechanically interlocked network (MIN) of [2]rotaxane, which can dissipate stress within wrinkles without disrupting the ...
- Professor Steven P. Armes, FRS
Other recent examples include the synthesis of novel sterically-stabilised pH-responsive microgels, surface polymerisation of stimulus-responsive polymer brushes from planar surfaces and the ...
- Scientists make plant-based meat alternatives more ‘meat-like’
In order to do this, they turned the plant proteins into plant protein microgels, a process that requires only one additional ingredient: water. A release explaining the study quoted several of the ...
- Professor Steven P. Armes, FRS
Other recent examples include the synthesis of novel sterically-stabilised pH-responsive microgels, surface polymerisation of stimulus-responsive polymer brushes from planar surfaces and the ...