DARPA’s new 1.8-gigapixel camera is a super high-resolution eye in the sky

The GES provides a visual interface to the ground imagery which is rather like that of Google Earth, allowing dozens of users to view the background imagery, moving target indicators that follow tens of thousands of ground targets

DARPA recently revealed information on its ARGUS-IS (Autonomous Real-Time Ground Ubiquitous Surveillance Imaging System), a surveillance camera that uses hundreds of smartphone image sensors to record a 1.8 gigapixel image. Designed for use in an unmanned drone (probably an MQ-1 Predator), from an altitude of 20,000 ft (6,100 m) ARGUS can keep a real-time video eye on an area 4.5 miles (7.2 km) across down to a resolution of about six inches (15 cm).

One of the greatest needs of a ground commander in these days of asymmetrical warfare is to know what is happening on the field of action. This alone allows a commander to guide forces to where they will have the greatest effectiveness, while also substantially reducing the chances of surprise actions by enemy forces. This level of situational awareness is difficult enough to acquire on a conventional battlefield, but has been nearly impossible when the field of action includes spatially messy theaters, such as towns, cities, and oil refineries.

Improving situational awareness, particularly in asymmetric warfare scenarios, is one of DARPA’s primary missions in recent years. The Autonomous Real-time Ground Ubiquitous Surveillance-Imaging System (ARGUS-IS) program is developing a real-time, high-resolution, wide-area video surveillance system that provides real-time video across a large theater of action, identifies and tracks moving objects, and provides up to 65 individually targeted video windows for close-up observation.

The 1.8 gigapixel digital camera is the simple part of the ARGUS-IS system, consisting of a matrix of CMOS optical sensors, high quality imaging optics, and a six-axis stabilized gimbal mounting system. The 1.8 gigapixel sensor is made up of a matrix of 368 Aptina MT9P031 5-megapixel smartphone CCDs. These sensors have an active area of 5.7 x 4.3 mm each, so the width of the sensor matrix is about 90 mm (3.5 in). Using a little trigonometry and basic optics, we can estimate the focal length of the imaging lens to be about 85 mm (3.35 in).

Using Commercial Off The Shelf (COTS) image sensors for wide angle imaging requires that telecentric imaging optics be used to avoid massive computer processing to correct the images. When a telecentric lens is used, the focused light hits the image sensors perpendicularly. This avoids brightness variations resulting from the lenslets positioned over the CMOS pixels and color distortions due to misalignment of the incoming light with the pixel’s Bayer filters.

Read more . . .

via Gizmag – 

See Also

The Latest Streaming News: Super high-resolution eye in the sky updated minute-by-minute

Bookmark this page and come back often

Latest NEWS


Latest VIDEO


The Latest from the BLOGOSPHERE

What's Your Reaction?
Don't Like it!
I Like it!
Scroll To Top