Now Reading
Creating a Graphene-Metal Sandwich to Improve Electronics

Creating a Graphene-Metal Sandwich to Improve Electronics

In the experiments conducted by Balandin and the other researchers, they were surprised that the improvement of thermal properties of graphene coated copper films was significant despite the fact that graphene’s thickness is only one atom. The puzzle was solved after they realized the improvement is the result of changes in copper’s nano-
In the experiments conducted by Balandin and the other researchers, they were surprised that the improvement of thermal properties of graphene coated copper films was significant despite the fact that graphene’s thickness is only one atom.
UC Riverside and University of Manchester researchers combine graphene and copper in hopes of shrinking electronics

Researchers have discovered that creating a graphene-copper-graphene “sandwich” strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

The work was led by Alexander A. Balandin, a professor of electrical engineering at the Bourns College of Engineering at the University of California, Riverside and Konstantin S. Novoselov, a professor of physics at the University of Manchester in the United Kingdom. Balandin and Novoselov are corresponding authors for the paper just published in the journal Nano Letters. In 2010, Novoselov shared the Nobel Prize in Physics with Andre Geim for their discovery of graphene.

In the experiments, the researchers found that adding a layer of graphene, a one-atom thick material with highly desirable electrical, thermal and mechanical properties, on each side of a copper film increased heat conducting properties up to 24 percent.

“This enhancement of copper’s ability to conduct heat could become important in the development of hybrid copper — graphene interconnects for electronic chips that continue to get smaller and smaller,” said Balandin, who in 2013 was awarded the MRS Medal from the Materials Research Society for discovery of unusual heat conduction properties of graphene.

Whether the heat conducting properties of copper would improve by layering it with graphene is an important question because copper is the material used for semiconductor interconnects in modern computer chips. Copper replaced aluminum because of its better electrical conductivity.

Downscaling the size of transistors and interconnects and increasing the number of transistors on computer chips has put an enormous strain on copper’s interconnect performance, to the point where there is little room for further improvement. For that reason there is a strong motivation to develop hybrid interconnect structures that can better conduct electrical current and heat.

In the experiments conducted by Balandin and the other researchers, they were surprised that the improvement of thermal properties of graphene coated copper films was significant despite the fact that graphene’s thickness is only one atom. The puzzle was solved after they realized the improvement is the result of changes in copper’s nano- and microstructure, not from graphene’s action as an additional heat conducting channel.

After examining the grain sizes in copper before and after adding graphene, the researcher found that chemical vapor deposition of graphene conducted at high temperature stimulates grain size growth in copper films. The larger grain sizes in copper coated with graphene results in better heat conduction.

Additionally, the researchers found that the heat conduction improvement by adding graphene was more pronounced in thinner copper films. This is significant because the enhancement should further improve as future copper interconnects scale down to the nanometers-range, which is 1/1000thof the micrometer range.

Read more . . .

See Also

 

The Latest on: Graphene and copper

[google_news title=”” keyword=”Graphene and copper” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Graphene and copper

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top