Corrie Detweiler, a professor of molecular, cellular and developmental biology, eyes some samples in the lab. (Photo: CU Boulder)
As scientists around the globe wage war against a novel, deadly virus, one CU Boulder lab is working on new weapons to battle a different microbial threat: a rising tide of antibiotic-resistant bacteria which, if left unchecked, could kill an estimated 10 million people annually by 2050.
“The COVID-19 situation is definitely putting us at risk for increasing resistance to antibiotics, so it’s more important now than ever that we come up with alternative treatments,” said Corrie Detweiler, a professor of molecular, cellular and developmental biology who has spent her career seeking those alternatives.
In a paper published Dec. 18 in the journal PLOS Pathogens, Detweiler and her research team unveil their latest discovery—a chemical compound that works with a host’s innate immune response to push past cellular barriers that help bacteria resist antibiotics.
Along with their other recently published discoveries, the authors say, the finding could lead to a new arsenal for fighting what could be the next big public health threat.
“If we don’t solve the problem of finding new antibiotics or somehow making old antibiotics work again, we are going to see sharply increasing deaths from bacterial infections we thought we had beaten decades ago,” said Detweiler. “This study offers a totally new approach and could point the way toward new drugs that work better and have fewer side effects.”
In the United States alone, 35,000 people die annually from bacterial infections that could not be treated because they’ve grown resistant to existing drugs. Countless others suffer life-threatening bouts with once-easily treatable illnesses like strep throat, urinary tract infections and pneumonia. By 2050, the authors note, there could be more deaths from antibiotic resistance than from cancer.
“As our existing antibiotics adapt and work less, we risk essentially going back to a period 100 years ago, when even a minor infection could mean death,” said Detweiler.
The pandemic has shone even more light on the problem, she notes, as many patients die not from the virus itself but from hard-to-treat secondary bacterial infections.
Meanwhile, she and other scholars worry that heightened use of antibiotics to prevent or treat those secondary infections, while at times necessary, may be exacerbating resistance.
“Fragile healthcare systems in many parts of the world may not withstand the COVID-19 pandemic if also faced with a substantial increase in antimicrobial resistance,” wrote the authors of an editorial in the British Medical Journal in November.
A new arsenal for an evolving war
Most antibiotics in use today were developed in the 1950s, and pharmaceutical companies have since scaled back on research in the field in favor of more profitable ventures.
To feed the pipeline, Detweiler’s lab developed a technique called SAFIRE for screening for new small molecules, which work differently than older drugs.
Of 14,400 candidates screened from a library of existing chemicals, SAFIRE identified 70 that hold promise.
The new paper centers around “JD1,” which appears to be particularly effective at infiltrating what are known as “Gram-negative bacteria.”
With a tough exterior membrane that prevents antibiotics from accessing the cell, and another interior membrane providing a buffer, these bacteria (including Salmonella and E. coli) are inherently difficult to treat.
But unlike other drugs, JD1 takes advantage of the host’s initial immune assault on that outer bacterial membrane, then slips inside and goes after the inner membrane too.
“This is the first study to show that you can target a Gram-negative bacteria’s inner membrane by exploiting the innate immune response of the host,” Detweiler said.
In laboratory and rodent experiments, JD1 reduced the survival and spread of Gram-negative bacteria called Salmonella enterica by 95%.
But while it damaged the bacterial cell membranes, it couldn’t penetrate the fine layer of cholesterol that lined its mammalian host’s cell membranes.
“Bacteria are vulnerable to JD1 in a way that our cells are not,” said Detweiler, noting that for this reason, side-effects would likely be minimal.
Further studies are underway to explore JD1 and other compounds like it.
Meanwhile, Detweiler has formed a spin-off company to help commercialize other compounds that work by inhibiting pumps, called “efflux pumps,” that bacteria use to pump out antibiotics.
“The reality is, evolution is way smarter than all of the scientists put together and these bacteria will continue to evolve to resist what we throw at them,” she said. “We cannot rest on our laurels. We have to keep feeding the pipeline.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Threat of superbugs
- Overuse And Resistance – The Perils Of Modern Medicine That Are Upon Us
When the Drugs Do not Work: The Hidden Pandemic that Could End Modern Medicine. The writer is Dr Anirban Mahapatra, a US-based microbiologist. It is a gripping read and deals with the growing threat ...
- Bye Bye Superbugs? New Antibiotic Is Virtually Resistance-Proof
Laura is an editor and staff writer at IFLScience. She obtained her Master's in Experimental Neuroscience from Imperial College London.
- UIC scientists develop combo antibiotic that can prevent superbugs
A series of discoveries about the chemistry of antibiotics and the ribosomes they target may have found a way around bacteria's pesky ability to evolve resistances.
- Union says privatizing hospital cleaning services at Etobicoke General increases threat of superbugs
William Osler Health System defends move as “common for many other hospitals” and that it has “rigorous” cleanliness audits.
- Could a Conflict-Borne Superbug Bring on Our Next Pandemic?
Drug-resistant bacteria are proliferating in war zones like Gaza and Ukraine — and spreading from the battlefield to hospitals and across borders.
Go deeper with Google Headlines on:
Threat of superbugs
[google_news title=”” keyword=”threat of superbugs” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Antibiotic-resistant bacteria
- Chicago scientists discover new antibiotic that may defeat bacterial resistance
Scientists at the University of Illinois Chicago have discovered a new antibiotic that may make it nearly impossible for bacteria to develop resistance, marking a significant breakthrough in the fight ...
- UIC scientists discover new antibiotic that may defeat bacterial resistance
Scientists at the University of Illinois Chicago have discovered a new antibiotic that may make it nearly impossible for bacteria to develop resistance, marking a significant breakthrough in the fight ...
- A New, Double-Action Antibiotic Thwarts Drug Resistance
According to The Lancet, almost 5 million deaths were associated with antibiotic resistance in 2019 alone. | Microbiology ...
- Blue light could kill at least 99% of bacteria linked to dog ear infections, new research shows
New research from the University of Nottingham and University of Birmingham has highlighted that blue light has the ability to kill antibiotic-resistant strains of bacteria isolated from ear ...
- New Antibiotic May Make Bacterial Resistance Nearly Impossible
A newly discovered antibiotic that disrupts two distinct biological targets will make it 100 million times harder for bacte ...
Go deeper with Google Headlines on:
Antibiotic-resistant bacteria
[google_news title=”” keyword=”antibiotic-resistant bacteria” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]