Now Reading
Controlling Superconductors with Light

Controlling Superconductors with Light

TAU researcher discovers that a ray of light could lead to the next generation of superconductors

A superconductor, which can move electrical energy with no wasteful resistance, is the holy grail of cost-effective, efficient, and “green” power production. Unlike traditional conductors such as copper or silver, which waste power resources and lose energy when they heat up, an ideal superconductor would continuously carry electrical current without losing any power.

But creating a true superconductor is tricky. Though the concept of high temperature superconductors is more than two decades old, finding and controlling the right materials has been a challenge. Now Prof. Yoram Dagan of Tel Aviv University‘s Department of Physics and Center for Nanoscience and Nanotechnology has discovered an innovative way to manipulate superconducting materials.

Temperature is a crucial element for superconductors, explains Prof. Dagan — each material has a critical temperature when it becomes superconducting. But by manipulating different types of light, including UV and visible light, he and his fellow researchers are able to alter the critical temperatures of superconducting materials. This finding adds to a growing toolbox for controlling and improving the technology.

The research has been published in Angewandte Chemie and featured in Nature Nanotechnology.

Scientists have long sought ways to alter the temperature of superconducting materials, making them more practical. One of these methods includes chemical doping, removing or adding ions such as oxygen to alter the critical temperature of the material. But Prof. Dagan said that he and his fellow researchers were inspired to find a simpler way.

In the lab, they put a thin layer, one organic molecule thick, atop a superconducting film, approximately 50 nanometers thick. When researchers shined a light on these molecules, the molecules stretched and changed shape, altering the properties of the superconducting film — most importantly, altering the critical temperature at which the material acted as a superconductor.

The researchers tested three separate molecules. The first was able to increase the critical temperature of the superconducting film. With the second molecule, they found that shining an ultraviolet light heightened the material’s critical temperature, while visible light lowered it. Finally, with the third molecule, they found that simply by turning a light on, critical temperature was raised — and lowered again when the light was switched off. Prof. Dagan calls this discovery a new “knob” for controlling the temperature of superconducting materials.

Read more . . .

via AFTAU

See Also

 

The Latest Streaming News: Controlling Superconductors updated minute-by-minute

Bookmark this page and come back often
 

Latest NEWS

 

Latest VIDEO

 

The Latest from the BLOGOSPHERE

What's Your Reaction?
Don't Like it!
0
I Like it!
0
View Comments (0)

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Scroll To Top