Now Reading
Bioengineers put human hearts on a chip to aid drug screening

Bioengineers put human hearts on a chip to aid drug screening

The “heart-on-a-chip” developed at UC Berkeley houses human heart tissue derived from adult stem cells. The system could one day replace animal models for drug safety screening. (Photo by Anurag Mathur, Healy Lab)
The “heart-on-a-chip” developed at UC Berkeley houses human heart tissue derived from adult stem cells. The system could one day replace animal models for drug safety screening. (Photo by Anurag Mathur, Healy Lab)

When UC Berkeley bioengineers say they are holding their hearts in the palms of their hands, they are not talking about emotional vulnerability

Instead, the research team led by bioengineering professor Kevin Healy is presenting a network of pulsating cardiac muscle cells housed in an inch-long silicone device that effectively models human heart tissue, and they have demonstrated the viability of this system as a drug-screening tool by testing it with cardiovascular medications.

This organ-on-a-chip, reported in a study published today (Monday, March 9) in the journal Scientific Reports, represents a major step forward in the development of accurate, faster methods of testing for drug toxicity. The project is funded through the Tissue Chip for Drug Screening Initiative, an interagency collaboration launched by the National Institutes of Health to develop 3-D human tissue chips that model the structure and function of human organs.

“Ultimately, these chips could replace the use of animals to screen drugs for safety and efficacy,” said Healy.

The study authors noted a high failure rate associated with the use of nonhuman animal models to predict human reactions to new drugs. Much of this is due to fundamental differences in biology between species, the researchers explained. For instance, the ion channels through which heart cells conduct electrical currents can vary in both number and type between humans and other animals.

“Many cardiovascular drugs target those channels, so these differences often result in inefficient and costly experiments that do not provide accurate answers about the toxicity of a drug in humans,” said Healy. “It takes about $5 billion on average to develop a drug, and 60 percent of that figure comes from upfront costs in the research and development phase. Using a well-designed model of a human organ could significantly cut the cost and time of bringing a new drug to market.”

Read more: Bioengineers put human hearts on a chip to aid drug screening

 

The Latest on: Organ-on-a-chip

[google_news title=”” keyword=”Organ-on-a-chip” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

See Also

 

The Latest on: Organ-on-a-chip

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top