Now Reading
Big Data Needs a Big Theory to Go with It

Big Data Needs a Big Theory to Go with It

5332884424_6b7fc642f4_m
Complexity (Photo credit: rutty)

Just as the industrial age produced the laws of thermodynamics, we need universal laws of complexity to solve our seemingly intractable problems

As the world becomes increasingly complex and interconnected, some of our biggest challenges have begun to seem intractable. What should we do about uncertainty in the financial markets? How can we predict energy supply and demand? How will climate change play out? How do we cope with rapid urbanization? Our traditional approaches to these problems are often qualitative and disjointed and lead to unintended consequences. To bring scientific rigor to the challenges of our time, we need to develop a deeper understanding of complexity itself.

What does this mean? Complexity comes into play when there are many parts that can interact in many different ways so that the whole takes on a life of its own: it adapts and evolves in response to changing conditions. It can be prone to sudden and seemingly unpredictable changes—a market crash is the classic example. One or more trends can reinforce other trends in a “positive feedback loop” until things swiftly spiral out of control and cross a tipping point, beyond which behavior changes radically.

What makes a “complex system” so vexing is that its collective characteristics cannot easily be predicted from underlying components: the whole is greater than, and often significantly different from, the sum of its parts. A city is much more than its buildings and people. Our bodies are more than the totality of our cells. This quality, called emergent behavior, is characteristic of economies, financial markets, urban communities, companies, organisms, the Internet, galaxies and the health care system.

The digital revolution is driving much of the increasing complexity and pace of life we are now seeing, but this technology also presents an opportunity. The ubiquity of cell phones and electronic transactions, the increasing use of personal medical probes, and the concept of the electronically wired “smart city” are already providing us with enormous amounts of data. With new computational tools and techniques to digest vast, interrelated databases, researchers and practitioners in science, technology, business and government have begun to bring large-scale simulations and models to bear on questions formerly out of reach of quantitative analysis, such as how cooperation emerges in society, what conditions promote innovation, and how conflicts spread and grow.

See Also

Read more . . .

 

The Latest Bing News on:
Big Data
The Latest Google Headlines on:
Big Data

[google_news title=”” keyword=”Big Data” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Emergent behavior
The Latest Google Headlines on:
Emergent behavior

[google_news title=”” keyword=”emergent behavior” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top