Now Reading
ARES system to put energy storage on the right track

ARES system to put energy storage on the right track

ares-energy-storage
The ARES system uses electric locomotives as a form of energy storage

ARES’ technology uses heavy rail cars that are pushed to the top of a grade using excess power from renewable energy plants or when electricity demand is low

We’ve recently looked at ocean-based energy storage system concepts from MIT and Subhydro AS that are designed to overcome the intermittency problems of renewable energy sources like wind and solar by pumping water out of large tanks and using gravity to let it back in and generate electricity when needed. Santa Barbara, California-based company Advanced Rail Energy Storage (ARES) has come up with a land-based alternative that would provide grid scale energy storage using electric locomotives.

ARES’ technology uses heavy rail cars that are pushed to the top of a grade using excess power from renewable energy plants or when electricity demand is low. Then, when the wind drops, the sun stops shining, or electricity demand rises, the rail cars are released back down the hill, generating electricity through regenerative braking.

Because the system doesn’t rely on the use of water like the aforementioned ocean-based systems, the company says the technology is suitable for a wider variety of areas with minimal environmental impact. The company says the system can also respond to increases or decreases in demand in a matter of seconds, boasts a charge/discharge efficiency of 86 percent, and can deliver constant power for periods of up to eight hours.

ARES’ Director of Technology Development, William Peitzke told us to think of the system as basically a “grid-scale flywheel or battery, but one which is able to lock into direct synchronization with the grid providing heavy inertia for added grid stability.”

The company says its system is scalable and can be configured to provide grid-frequency regulation systems from 10 to 200 MW power and grid scale energy storage systems from 200 MW power with 1 GWh of energy storage, up to regional energy storage hubs of 2 GW power and 32 GWh of energy storage. ARES adds that its system also boasts a higher energy-to-power ratio than flywheels, a lower life-cycle cost than batteries and a faster ramp-up rate than pumped-storage.

With multiple vehicles position on the same track, the vehicles move independently and can be positioned mid-elevation in a queue. As one vehicle comes out of the queue at the end, another enters the queue to maintain a constant power into or out of the grid.

See Also

Power is transferred to and from the vehicles by way of a conductor rail, while vehicle speed and location information gathered from small leading wheels on the vehicles is transmitted to a control station that coordinates the vehicles based on current energy requirements and prevents the vehicles from crashing into each other. In the event of a power disruption, air brakes on the vehicles activate automatically.

Read more . . .

 

The Latest Bing News on:
Advanced Rail Energy Storage
The Latest Google Headlines on:
Advanced Rail Energy Storage

[google_news title=”” keyword=”Advanced Rail Energy Storage” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
ARES energy storage
The Latest Google Headlines on:
ARES energy storage

[google_news title=”” keyword=”ARES energy storage” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top