A team of scientists at the University of Chicago’s Pritzker School of Molecular Engineering announced the discovery of a simple modification that allows quantum systems to stay operational–or “coherent”–10,000 times longer than before.
CREDIT
University of Chicago
Simple innovation expected to open multiple new avenues for quantum science
If we can harness it, quantum technology promises fantastic new possibilities. But first, scientists need to coax quantum systems to stay yoked for longer than a few millionths of a second.
A team of scientists at the University of Chicago‘s Pritzker School of Molecular Engineering announced the discovery of a simple modification that allows quantum systems to stay operational–or “coherent”–10,000 times longer than before. Though the scientists tested their technique on a particular class of quantum systems called solid-state qubits, they think it should be applicable to many other kinds of quantum systems and could thus revolutionize quantum communication, computing and sensing.
The study was published Aug. 13 in Science.
“This breakthrough lays the groundwork for exciting new avenues of research in quantum science,” said study lead author David Awschalom, the Liew Family Professor in Molecular Engineering, senior scientist at Argonne National Laboratory and director of the Chicago Quantum Exchange. “The broad applicability of this discovery, coupled with a remarkably simple implementation, allows this robust coherence to impact many aspects of quantum engineering. It enables new research opportunities previously thought impractical.”
Down at the level of atoms, the world operates according to the rules of quantum mechanics–very different from what we see around us in our daily lives. These different rules could translate into technology like virtually unhackable networks or extremely powerful computers; the U.S. Department of Energy released a blueprint for the future quantum internet in an event at UChicago on July 23. But fundamental engineering challenges remain: Quantum states need an extremely quiet, stable space to operate, as they are easily disturbed by background noise coming from vibrations, temperature changes or stray electromagnetic fields.
Thus, scientists try to find ways to keep the system coherent as long as possible. One common approach is physically isolating the system from the noisy surroundings, but this can be unwieldy and complex. Another technique involves making all of the materials as pure as possible, which can be costly. The scientists at UChicago took a different tack.
“With this approach, we don’t try to eliminate noise in the surroundings; instead, we “trick” the system into thinking it doesn’t experience the noise,” said postdoctoral researcher Kevin Miao, the first author of the paper.
In tandem with the usual electromagnetic pulses used to control quantum systems, the team applied an additional continuous alternating magnetic field. By precisely tuning this field, the scientists could rapidly rotate the electron spins and allow the system to “tune out” the rest of the noise.
“To get a sense of the principle, it’s like sitting on a merry-go-round with people yelling all around you,” Miao explained. “When the ride is still, you can hear them perfectly, but if you’re rapidly spinning, the noise blurs into a background.”
This small change allowed the system to stay coherent up to 22 milliseconds, four orders of magnitude higher than without the modification–and far longer than any previously reported electron spin system. (For comparison, a blink of an eye takes about 350 milliseconds). The system is able to almost completely tune out some forms of temperature fluctuations, physical vibrations, and electromagnetic noise, all of which usually destroy quantum coherence.
The simple fix could unlock discoveries in virtually every area of quantum technology, the scientists said.
“This approach creates a pathway to scalability,” said Awschalom. “It should make storing quantum information in electron spin practical. Extended storage times will enable more complex operations in quantum computers and allow quantum information transmitted from spin-based devices to travel longer distances in networks.”
Though their tests were run in a solid-state quantum system using silicon carbide, the scientists believe the technique should have similar effects in other types of quantum systems, such as superconducting quantum bits and molecular quantum systems. This level of versatility is unusual for such an engineering breakthrough.
“There are a lot of candidates for quantum technology that were pushed aside because they couldn’t maintain quantum coherence for long periods of time,” Miao said. “Those could be re-evaluated now that we have this way to massively improve coherence.
“The best part is, it’s incredibly easy to do,” he added. “The science behind it is intricate, but the logistics of adding an alternating magnetic field are very straightforward.”
The Latest Updates from Bing News & Google News
Go deeper with Bing News on:
Quantum states
- Magnetic Butterfly: Scientists Unveil Groundbreaking Design Concept for Next-Generation Quantum Materials
NUS researchers have created a new butterfly-shaped magnetic nanographene that could improve quantum computing by enabling better control of electron spins and extending the coherence times of quantum ...
- Scientists combine trapped atoms and photonics for next-gen quantum devices
Quantum computers promise to solve many of the world’s toughest problems faster and more efficiently than today’s computers. However, building bigger and more interconnected quantum computers has been ...
- After missing out on federal funding, Chicago quantum still poised for growth
Find out why Chicago's bid to become a global hub for quantum has gained steam in the last few weeks despite recent setbacks.
- Amendments to Canada’s Export Control List: Addition of Quantum Computing and Advanced Semiconductors
On July 20, 2024, an Order Amending Canada’s Export Control List (ECL) (SOR/2024-112, or the Order) came into effect. This amendment adds five ...
- Next-gen quantum computers could be powered with high-energy lasers made 10,000 times smaller
High-powered titanium:sapphire lasers have been shrunk down with scientists planning to cram hundreds or thousands onto a four-inch wafer in a new chip.
Go deeper with Google Headlines on:
Quantum states
[google_news title=”” keyword=”quantum states” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]
Go deeper with Bing News on:
Quantum technology
- After missing out on federal funding, Chicago quantum still poised for growth
Find out why Chicago's bid to become a global hub for quantum has gained steam in the last few weeks despite recent setbacks.
- Quantum Transistors gets $19M award to enable quantum computing on a chip
Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Quantum Transistors, a developer of advanced quantum processors, has been ...
- Britain and India Partner on Technology Security Initiative
Britain launched a new technology security initiative with India to boost economic growth and foster collaboration on telecommunications security. The agreement focuses on critical technologies like ...
- Over $7.4 Million Awarded to INRS to Revolutionize Quantum Technology
Three promising projects led by INRS professors will receive $7.4 million in funding over the next few years. These initiatives aim to enhance quantum communication, computing, and sensing ...
- 3 Quantum Computing Stocks With Big Breakout Potential
The quantum computing industry is growing rapidly, as the rise of artificial intelligence (AI) necessitates faster and more sophisticated architecture to carry out complex tasks. Unlike binary digits ...
Go deeper with Google Headlines on:
Quantum technology
[google_news title=”” keyword=”quantum technology” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]