Now Reading
A biocompatible hydrogel material that can reversibly form and deform could play a significant role in artificial joints and ligaments

A biocompatible hydrogel material that can reversibly form and deform could play a significant role in artificial joints and ligaments

Old gel, new gel. These images were taken using polarized, or twisted, light to visualize areas undergoing stress. (Left) A typical hydrogel has snapped under stress while (right) the self-reinforced gel stretches in spite of the stress, highlighted in red. Credit: Mayumi et al.

Old gel, new gel. These images were taken using polarized, or twisted, light to visualize areas undergoing stress. (Left) A typical hydrogel has snapped under stress while (right) the self-reinforced gel stretches in spite of the stress, highlighted in red.
Credit: Mayumi et al.

 

A biocompatible hydrogel material that can reversibly form and deform could play a significant role in artificial joints and ligaments

Biocompatible hydrogel materials can rapidly recover from mechanical stress

Hydrogels are polymer materials made mostly from water. They can be used in a wide range of medical and other applications. However, previous incarnations of the materials suffered from repeated mechanical stress and would easily become deformed. A novel crystal that can reversibly form and deform, allows hydrogels to rapidly recover from mechanical stress. This opens up the use of such biocompatible materials in the field of artificial joints and ligaments.

Many of us suffer the occasional sports injury or experience some kind of pain relating to joints and ligaments at some point in our lives. For serious injuries of this nature, there is often little that can be done to repair the damage. But a new development in the field of water-rich polymer materials known as hydrogels could find its way to the operating room in around 10 years or so. And they should stand up to the same mechanical stresses our natural joint and ligament tissues experience too. They’re called self-reinforced gels.

“The problem with existing hydrogels is that they can be mechanically weak and so need strengthening,” said Associate Professor Koichi Mayumi from the Institute for Solid State Physics at the University of Tokyo. “However, previous methods to toughen them up only work a limited number of times, or sometimes just once. Those gels do not recover rapidly from stresses such as impacts well at all. So we looked at other materials which do show strong recoverability, such as natural rubber. Taking inspiration from these, we created a hydrogel that exhibits rubberlike toughness and recoverability whilst maintaining flexibility.”

Previous examples of toughened hydrogels use so-called sacrificial bonds which break when deformed. The destruction of the sacrificial bonds would dissipate mechanical energy giving the material strength, but the sacrificial bonds would take time, sometimes minutes, to recover. And sometimes they would not recover at all.

In contrast, Mayumi and his team introduced crystals which assemble into rigid shapes under strain, but very quickly revert back to a gel state when the strain is released. In other words, the overall hydrogel is extremely flexible at rest but firms up on impact, much like natural rubbers do. The crystalline structures are composed of polyethylene glycol (PEG) chains bound by hydroxypropyl-?-cyclodextrin (HP?CD) rings in a water-based hydrogel.

“As hydrogels are over 50% water, they are considered highly biocompatible, essential for medical applications,” said Mayumi. “Our next stage of research is to try different arrangements of molecules. If we simplify our structures, then we can reduce the cost of materials which will also help accelerate adoption of them by the medical industry.”

 

See Also

Original Article: Healing hydrogels

More from: University of Tokyo 

 

 

The Latest Updates from Bing News & Google News

Go deeper with Bing News on:
Healing hydrogels
Go deeper with Google Headlines on:
Healing hydrogels

[google_news title=”” keyword=”healing hydrogels” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]

Go deeper with Bing News on:
Biocompatible hydrogel materials
Go deeper with Google Headlines on:
Biocompatible hydrogel materials

[google_news title=”” keyword=”biocompatible hydrogel materials” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top