Now Reading
3-D engineered bone marrow makes functioning platelets

3-D engineered bone marrow makes functioning platelets

A team led by researchers at the Tufts University School of Engineering and the University of Pavia has reported development of the first three-dimensional tissue system that reproduces the complex structure and physiology of human bone marrow and successfully generates functional human platelets. Using a biomaterial matrix of porous silk, the new, scalable system is capable of producing platelets for future clinical use and also provides a laboratory tissue system to advance study of blood platelet diseases. Shown above are platelet-producing blood cells called megakaryocytes (blue) releasing filament-like CREDIT Courtesy Tufts University
A team led by researchers at the Tufts University School of Engineering and the University of Pavia has reported development of the first three-dimensional tissue system that reproduces the complex structure and physiology of human bone marrow and successfully generates functional human platelets. Using a biomaterial matrix of porous silk, the new, scalable system is capable of producing platelets for future clinical use and also provides a laboratory tissue system to advance study of blood platelet diseases. Shown above are platelet-producing blood cells called megakaryocytes (blue) releasing filament-like
CREDIT
Courtesy Tufts University

Scalable model supports patient-specific treatments, advanced study of blood disorders

A team led by researchers at Tufts University School of Engineering and the University of Pavia has reported development of the first three-dimensional tissue system that reproduces the complex structure and physiology of human bone marrow and successfully generates functional human platelets. Using a biomaterial matrix of porous silk, the new system is capable of producing platelets for future clinical use and also provides a laboratory tissue system to advance study of blood platelet diseases.

“There are many diseases where platelet production or function is impaired,” says Alessandra Balduini, M.D., research associate professor in the Department of Biomedical Engineering at Tufts, associate professor at the Department of Molecular Medicine at the University of Pavia and co-corresponding author on the paper. “New insight into the formation of platelets would have a major impact on patients and healthcare. In this tissue system, we can culture patient-derived megakaryocytes — the bone marrow cells that make platelets — and also endothelial cells, which are found in bone marrow and promote platelet production, to design patient-specific drug administration regimes.”

The new system can also provide an in vitro laboratory tissue system with which to study mechanisms of blood disease and to predict efficacy of new drugs–providing a more precise and less costly alternative to in vivo animal models.

Read more: 3-D engineered bone marrow makes functioning platelets

 

The Latest on: 3D tissue system

[google_news title=”” keyword=”3D tissue system” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

See Also

 

The Latest on: 3D tissue system

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top