Now Reading
Tomorrow’s batteries will be squeezed out of nozzles, like toothpaste

Tomorrow’s batteries will be squeezed out of nozzles, like toothpaste

4926625_8e88ddbb38_m
PARC (Photo credit: askpang)

This time they are hoping to produce the technologies for a 21st-century revolution in clean energy.

IN THE 1970s researchers lounging on bean bags at Xerox’s Palo Alto Research Centre (PARC) churned out the inventions that would trigger the coming revolution in information technology. The computer mouse was born here, as were icons, windows, Ethernet networking and the laser printer. Today, although the bean bags are long gone and PARC was spun out as a subsidiary a decade ago, its researchers are once again experimenting with printing. This time they are hoping to produce the technologies for a 21st-century revolution in clean energy.

PARC’s Hardware Systems Laboratory is developing electric-vehicle lithium-ion batteries that can hold 20% more energy than traditional designs. Making a battery that can store more energy requires a larger cathode containing more lithium ions. However, the thicker the cathode, the slower the ions will move through it. This reduces the battery’s power, leading to sluggish acceleration.

PARC wants to evade this trade-off by constructing cathodes from two materials: one dense, and optimised for storage; the other porous, for the speedy transfer of charge. Wide storage regions would alternate with narrow conductive regions. That will enable a larger and more energy-dense battery to be constructed without sacrificing its power.

This basic idea has been understood for some time. The trick is building the regions small enough (about 100 microns across for the storage medium, and ten for the conductor). The cathode of a typical electric car’s battery would need tens of thousands of these interleaved fingers. Making such tiny features with precision would require photolithography, an expensive technology unsuitable for high-speed volume manufacturing of big batteries.

The PARC researchers’ solution, which would surely have impressed their free-thinking forebears, was inspired by striped toothpaste. In PARC’s new battery, the two materials are mixed with an organic material to form pastes and fed into a print head containing tiny channels and nozzles. The print head moves over a metal foil, extruding the pastes alongside one another, to create thin stripes. Drying the substrate removes most of the organic material, leaving a solid cathode. In tests against otherwise identical batteries sporting cathodes made of but one substance, the co-extruded rechargeables could store a fifth more energy. Scott Elrod, the laboratory’s boss, says that PARC is now discussing how to test the new battery with firms that might eventually manufacture it.

See Also

Read more . . .

 

The Latest Bing News on:
Batteries
The Latest Google Headlines on:
Batteries

[google_news title=”” keyword=”batteries” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Energy storage
The Latest Google Headlines on:
Energy storage

[google_news title=”” keyword=”energy storage” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top