Tiny Biocomputers Move Closer to Reality

 

Several research groups are developing DNA-based circuits that could one day monitor and treat disease from inside the body

Researchers in nanomedicine have long dreamed of an age when molecular-scale computing devices could be embedded in our bodies to monitor health and treat diseases before they progress. The advantage of such computers, which would be made of biological materials, would lie in their ability to speak the biochemical language of life.

Several research groups have recently reported progress in this field. A team at the California Institute of Technology, writing in the journal Science, made use of DNA nanostructures called seesaw gates to construct logic circuits analogous to those used in microprocessors. Just as silicon-based components use electric current to represent 1’s and 0’s, bio-based circuits use concentrations of DNA molecules in a test tube. When new DNA strands are added to the test tube as “input,” the solution undergoes a cascade of chemical interactions to release different DNA strands as “output.” In theory, the input could be a molecular indicator of a disease, and the output could be an appropriate therapeutic molecule. A common problem in constructing a computer in a test tube is that it is hard to control which interactions among molecules occur. The brilliance of the seesaw gate is that a particular gate responds only to particular input DNA strands.

In a subsequent Nature paper, the Caltech researchers showed off the power of their technique by building a DNA-based circuit that could play a simple memory game. A circuit with memory could, if integrated into living cells, recognize and treat complex diseases based on a series of biological clues.

Read more . . .

 

See Also

Bookmark this page for “biocomputers” and check back regularly as these articles update on a frequent basis. The view is set to “news”. Try clicking on “video” and “2” for more articles.

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top