‘Physically unclonable function’ is 10 times more reliable than previous methods
Rice University integrated circuit (IC) designers are at Silicon Valley’s premier chip-design conference to unveil technology that is 10 times more reliable than current methods of producing unclonable digital fingerprints for Internet of Things (IoT) devices.
Rice’s Kaiyuan Yang and Dai Li will present their physically unclonable function (PUF) technology today at the 2019 International Solid-State Circuits Conference (ISSCC), a prestigious scientific conference known informally as the “Chip Olympics.” PUF uses a microchip’s physical imperfections to produce unique security keys that can be used to authenticate devices linked to the Internet of Things.
Considering that some experts expect Earth to pass the threshold of 1 trillion internet-connected sensors within five years, there is growing pressure to improve the security of IoT devices.
Yang and Li’s PUF provides a leap in reliability by generating two unique fingerprints for each PUF. This “zero-overhead” method uses the same PUF components to make both keys and does not require extra area and latency because of an innovative design feature that also allows their PUF to be about 15 times more energy efficient than previously published versions.
“Basically each PUF unit can work in two modes,” said Yang, assistant professor of electrical and computer engineering. “In the first mode, it creates one fingerprint, and in the other mode it gives a second fingerprint. Each one is a unique identifier, and dual keys are much better for reliability. On the off chance the device fails in the first mode, it can use the second key. The probability that it will fail in both modes is extremely small.”
As a means of authentication, PUF fingerprints have several of the same advantages as human fingerprints, he said.
“First, they are unique,” Yang said. “You don’t have to worry about two people having the same fingerprint. Second, they are bonded to the individual. You cannot change your fingerprint or copy it to someone else’s finger. And finally, a fingerprint is unclonable. There’s no way to create a new person who has the same fingerprint as someone else.”
PUF-derived encryption keys are also unique, bonded and unclonable. To understand why, it helps to understand that each transistor on a computer chip is incredibly small. More than a billion of them can be crammed onto a chip half the size of a credit card. But for all their precision, microchips are not perfect. The difference between transistors can amount to a few more atoms in one or a few less in another, but those miniscule differences are enough to produce the electronic fingerprints used to make PUF keys.
For a 128-bit key, a PUF device would send request signals to an array of PUF cells comprising several hundred transistors, allocating a one or zero to each bit based on the responses from the PUF cells. Unlike a numeric key that’s stored in a traditional digital format, PUF keys are actively created each time they’re requested, and different keys can be used by activating a different set of transistors.
Adopting PUF would allow chipmakers to inexpensively and securely generate secret keys for encryption as a standard feature on next-generation computer chips for IoT devices like “smart home” thermostats, security cameras and lightbulbs.
Encrypted lightbulbs? If that sounds like overkill, consider that unsecured IoT devices are what three young computer savants assembled by the hundreds of thousands to mount the October 2016 distributed denial-of-service attack that crippled the internet on the East Coast for most of a day.
“The general concept for IoT is to connect physical objects to the internet in order to integrate the physical and cyber worlds,” Yang said. “In most consumer IoT today, the concept isn’t fully realized because many of the devices are powered and almost all use existing IC feature sets that were developed for the mobile market.”
In contrast, the devices coming out of research labs like Yang’s are designed for IoT from the ground up. Measuring just a few millimeters in size, the latest IoT prototypes can pack a processor, flash memory, wireless transmitter, antenna, one or more sensors, batteries and more into an area the size of a grain of rice.
PUF is not a new idea for IoT security, but Yang and Li’s version of PUF is unique in terms of reliability, energy efficiency and the amount of area it would take to implement on a chip. For starters, Yang said the performance gains were measured in tests at military-grade temperatures ranging from 125 degrees Celsius to minus 55 degrees Celsius and when supply voltage dropped by up to 50 percent.
“If even one transistor behaves abnormally under varying environmental conditions, the device will produce the wrong key, and it will look like an inauthentic device,” Yang said. “For that reason, reliability, or stability, is the most important measure for PUF.”
Energy efficiency also is important for IoT, where devices can be expected to run for a decade on a single battery charge. In Yang and Li’s PUF, keys are created using a static voltage rather than by actively powering up the transistor. It’s counterintuitive that the static approach would be more energy efficient because it’s the equivalent of leaving the lights on 24/7 rather than flicking the switch to get a quick glance of the room.
“Normally, people have sleep mode activated, and when they want to create a key, they activate the transistor, switch it once and then put it to sleep again,” Yang said. “In our design, the PUF module is always on, but it takes very little power, even less than a conventional system in sleep mode.”
On-chip area — the amount of space and expense manufacturers would have to allocate to put the PUF device on a production chip — is the third metric where they outperform previously reported work. Their design occupied 2.37 square micrometers to generate one bit on prototypes produced using 65-nanometer complementary metal-oxide-semiconductor (CMOS) technology.
Learn more: Rice U. researchers unveil Internet of Things security feature
The Latest on: Physically unclonable function
[google_news title=”” keyword=”physically unclonable function” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Physically unclonable function
- Everyday physical activity alone not enough to prevent strokeon July 29, 2024 at 11:01 am
Research conducted at the University of Gothenburg shows that the physical activities we do as we go about our lives, at work or in the home, aren't enough to protect us from having a stroke.
- Under pressure: How cells respond to physical stresson July 25, 2024 at 12:18 pm
Cells are surrounded by a membrane -- the plasma membrane -- which acts as a physical barrier but must also be malleable ... This dynamism is critical to membrane function but must be finely balanced ...
- How 49ers QB Purdy developed physically during healthy offseasonon July 25, 2024 at 8:17 am
SANTA CLARA — Quarterback Brock Purdy returned to the 49ers facility this week slightly bigger physically after a fully healthy offseason. This is nothing new to coach Kyle Shanahan, who shared ...
- Physically fit for duty: What is the San Angelo police force stance on mandatory fitness?on July 24, 2024 at 12:16 pm
Some law enforcement agencies in Texas are shedding mandatory physical fitness standards. Is the San Angelo Police Department among them? SAPD Chief Travis Griffith said there is no push to change ...
- We're ignoring easy ways to encourage children to be physically activeon July 23, 2024 at 5:00 pm
As we prepare to settle down on our sofas to watch the latest generation of Olympians and Paralympians perform jaw-dropping feats of physical prowess, the irony won’t be lost on many of us ...
- Stress-related cell damage linked to negative mental and physical health effects among caregiverson July 17, 2024 at 1:38 pm
Researchers have found that intense stress can be felt at the cellular level and is linked to negative physical and mental health effects.
- Jannik Sinner out of Wimbledon after struggling physically vs. Daniil Medvedevon July 8, 2024 at 5:00 pm
Medvedev came through a gruelling match 6-7, 6-4, 7-6, 2-6, 6-3, after Sinner struggled physically in the middle sets. He looked breathless under the Centre Court roof at various points.
- Opinion: Many people can’t physically flee disasters. Too often, we fail to help themon July 7, 2024 at 1:08 pm
And for some individuals with access and functional needs, it was a nightmare. One of the impacted jurisdictions had, as part of its emergency operations plan, outlined a process to provide ...
- More than 50 candidates and campaigners physically assaulted ahead of French electionson July 5, 2024 at 1:54 pm
French authorities have recorded more than 50 physical assaults on candidates and campaigners on the campaign trail, the country’s Interior Minister Gérald Darmanin said Friday as concerns ...
- This is the most physically challenging tourist attraction in the U.S.on June 26, 2024 at 5:01 pm
If you like a bit of fitness with your sightseeing, a study by Puregym has ranked the world’s most physically demanding tourist attractions, and number two is right here in the U.S. To determine ...
via Bing News