The first compound that directly makes cancer cells commit suicide while sparing healthy cells

This image depicts the structure of the BAX protein (purple). The activator compound BTSA1 (orange) has bound to the active site of BAX (green), changing the shape of the BAX molecule at several points (shown in yellow, magenta and cyan). BAX, once in its final activated form, can home in on mitochondria and puncture their outer membranes, triggering apoptosis (cell death).
Scientists at Albert Einstein College of Medicine have discovered the first compound that directly makes cancer cells commit suicide while sparing healthy cells. The new treatment approach, described in today’s issue of Cancer Cell, was directed against acute myeloid leukemia (AML) cells but may also have potential for attacking other types of cancers.

“We’re hopeful that the targeted compounds we’re developing will prove more effective than current anti-cancer therapies by directly causing cancer cells to self-destruct,” says Evripidis Gavathiotis, Ph.D., associate professor of biochemistry and of medicine and senior author of the study. “Ideally, our compounds would be combined with other treatments to kill cancer cells faster and more efficiently—and with fewer adverse effects, which are an all-too-common problem with standard chemotherapies.”

AML accounts for nearly one-third of all new leukemia cases and kills more than 10,000 Americans each year. The survival rate for patients has remained at about 30 percent for several decades, so better treatments are urgently needed.

The newly discovered compound combats cancer by triggering apoptosis—an important process that rids the body of unwanted or malfunctioning cells. Apoptosis trims excess tissue during embryonic development, for example, and some chemotherapy drugs indirectly induce apoptosis by damaging DNA in cancer cells.

Apoptosis occurs when BAX—the “executioner protein” in cells—is activated by “pro-apoptotic” proteins in the cell. Once activated, BAX molecules home in on and punch lethal holes in mitochondria, the parts of cells that produce energy. But all too often, cancer cells manage to prevent BAX from killing them. They ensure their survival by producing copious amounts of “anti-apoptotic” proteins that suppress BAX and the proteins that activate it.

“Our novel compound revives suppressed BAX molecules in cancer cells by binding with high affinity to BAX’s activation site,” says Dr. Gavathiotis. “BAX can then swing into action, killing cancer cells while leaving healthy cells unscathed.”

Dr. Gavathiotis was the lead author of a 2008 paper in Nature that first described the structure and shape of BAX’s activation site. He has since looked for small molecules that can activate BAX strongly enough to overcome cancer cells’ resistance to apoptosis. His team initially used computers to screen more than one million compounds to reveal those with BAX-binding potential. The most promising 500 compounds—many of them newly synthesized by Dr. Gavathiotis’ team—were then evaluated in the laboratory.

“A compound dubbed BTSA1 (short for BAX Trigger Site Activator 1) proved to be the most potent BAX activator, causing rapid and extensive apoptosis when added to several different human AML cell lines,” says lead author Denis Reyna, M.S., a doctoral student in Dr. Gavathiotis’ lab. The researchers next tested BTSA1 in blood samples from patients with high-risk AML. Strikingly, BTSA1 induced apoptosis in the patients’ AML cells but did not affect patients’ healthy blood-forming stem cells.

Finally, the researchers generated animal models of AML by grafting human AML cells into mice. BTSA1 was given to half the AML mice while the other half served as controls. On average, the BTSA1-treated mice survived significantly longer (55 days) than the control mice (40 days), with 43 percent of BTSA1-treated AML mice alive after 60 days and showing no signs of AML.

Importantly, the mice treated with BTSA1 showed no evidence of toxicity. “BTSA1 activates BAX and causes apoptosis in AML cells while sparing healthy cells and tissues—probably because the cancer cells are primed for apoptosis,” says Dr. Gavathiotis. He notes that his study found that AML cells from patients contained significantly higher BAX levels compared with normal blood cells from healthy people. “With more BAX available in AML cells,” he explained, “even low BTSA1 doses will trigger enough BAX activation to cause apoptotic death, while sparing healthy cells that contain low levels of BAX or none at all.”

See Also

Plans call for Dr. Gavathiotis and his team to see whether BTSA1 will show similar effectiveness when tested on animal models of other types of cancer.

Learn more: Novel Treatment Causes Cancer to Self-Destruct Without Affecting Healthy Cells


The Latest on: Cancer cells commit suicide
[google_news title=”” keyword=”cancer cells commit suicide” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
  • Lung Cancer News
    on May 21, 2024 at 5:00 pm

    Feb. 28, 2024 — Researchers built a new atlas of lung cells, uncovering new cellular pathways and precursors in the development of lung adenocarcinoma, the most common type of lung cancer.

  • Researchers discover new pathway to cancer cell suicide
    on May 18, 2024 at 5:25 pm

    Chemotherapy kills cancer cells. But the way these cells die appears to be different than previously understood. Researchers have now uncovered a completely new way in which cancer cells die: due to ...

  • New Chemotherapy-Induced Cancer Cell Suicide Pathway Uncovered
    on May 16, 2024 at 5:39 pm

    Discovery of SLFN11 as the strongest biomarker for chemotherapy responsiveness suggests relevance for ribosomal stalling in the effectiveness of cancer therapy ...

  • Cancer immunotherapy articles from across Nature Portfolio
    on May 16, 2024 at 5:00 pm

    proteins expressed by cancer cells. Other cancer immunotherapies include vaccines and T cell infusions. In the KEYNOTE-564 trial, patients with resected clear cell renal cell carcinoma at a high ...

  • Researchers discover new pathway to cancer cell suicide
    on May 16, 2024 at 11:01 am

    This triggers a stress signal that causes the cells to die ... but initiates cell suicide when the damage becomes too severe. This prevents uncontrolled cell division and cancer formation.

  • Researchers discover how immune B cells hunt down cancer around the body
    on May 1, 2024 at 5:00 pm

    Scientists have discovered the key features of immune B cells that make them successful at targeting tumors—including when cancer has spread to a different part of the body. Scientists at the ...

  • Cancer Cells Give Orders
    on April 22, 2024 at 4:59 pm

    View full profile. Learn about our editorial policies. “[It is] interesting work that further highlights the complex intercellular crosstalk between stromal cells in cancer,” said Giulia Biffi, a ...

  • A Literature Review of Suicide in Cancer Patients
    on April 17, 2024 at 5:00 pm

    Of the 19 cases of suicide among patients with cancer, 8 (42%) had prostate cancer. Of the 64 who did not commit suicide, 27 or 43% had prostate cancer. Study only examined patients on Medicare ...

  • TAU researchers induce cancer cell suicide with bacterial toxin
    on July 2, 2023 at 6:29 am

    So, with a simple injection to the tumor bed, we can cause cancer cells to ‘commit suicide’ without damaging healthy cells. In addition, cancer cells can’t develop resistance to our ...

  • David Hockenbery, MD
    on December 15, 2018 at 12:40 am

    the process by which cells commit suicide when diseased or no longer needed. His research focuses on cell-death processes that are defective in many cancer cells, allowing them to grow unchecked. His ...

via Google News and Bing News

What's Your Reaction?
Don't Like it!
I Like it!
Scroll To Top