Now Reading
Successful Synthesis of Ammonia Using Visible Light, Water, and Atmospheric Nitrogen Uses Less Energy

Successful Synthesis of Ammonia Using Visible Light, Water, and Atmospheric Nitrogen Uses Less Energy

Layout of the NH3 synthesis device bearing the Nb-SrTiO3 photoelectrode loaded with Au-NPs and a Zr/ZrOx thin film
Layout of the NH3 synthesis device bearing the Nb-SrTiO3 photoelectrode loaded with Au-NPs and a Zr/ZrOx thin film
The synthesis of ammonia, which is a raw material for chemical fertilizers and chemical products, uses more than 1% of the energy consumption of the world for its synthesis.

Therefore, this method of artificial photosynthesis that efficiently uses visible light can make a great contribution to energy savings on a global scale.

Ammonia has gained attention as a next-generation energy carrier. By combining an optical antenna structure that can concentrate light into a nano-space, and a co-catalyst that selectively adsorbs nitrogen, we have succeeded in selectively synthesizing ammonia from water and dinitrogen under visible light irradiation.

The research group of Professor Hiroaki Misawa and Assistant Professor Tomoya Oshikiri of the Research Institute for Electronic Science of Hokkaido University, by using a photoelectrode in which gold nanoparticles are loaded on an oxide semiconductor substrate, has worked to develop a method of artificial photosynthesis that has received attention as an ultimate light energy conversion system.

At this time this research group has developed a co-catalyst that can convert dinitrogen into ammonia with good efficiency, and by supporting this co-catalyst on a photoelectrode in which gold nanoparticles are loaded, they have succeeded in using water, dinitrogen, and visible light to selectively synthesize ammonia, which has gained attention as a next-generation energy carrier.

The research and development of artificial photosynthesis systems that convert solar energy into storable chemical energy have gained attention as a way to solve the global energy problem.

Ammonia is expected to be one of the next-generation energy carriers of chemical energy because it has little danger of combustion or explosion and can be liquefied relatively easily.

At the present time ammonia is commercially manufactured by the method called the Haber-Bosch process1, but this reaction requires a large amount of energy, and more than 1% of the world’s energy consumption goes into the Haber-Bosch process.

Accordingly, in order to efficiently use ammonia as an energy carrier, the world awaits the development of a low-energy synthesis method that is fundamentally different from conventional synthesis methods.

By combining an optical antenna structure that can concentrate light into a nano-space, and a co-catalyst that selectively adsorbs nitrogen, we have succeeded in synthesizing ammonia from nitrogen and water by using visible light, which is found in abundance in solar energy.

In the future, by improving the reaction efficiency and widening the response wavelength band, we will work towards the commercialization of this ultimate, clean “ammonia photosynthesis”, which can generate ammonia from the visible light in sunlight, the nitrogen in the air, and water.

Learn more: Successful Synthesis of Ammonia Using Visible Light, Water, and Atmospheric Nitrogen

 

See Also
MIT engineers have created a “supercapacitor” made of ancient, abundant materials, that can store large amounts of energy. Made of just cement, water, and carbon black (which resembles powdered charcoal), the device could form the basis for inexpensive systems that store intermittently renewable energy, such as solar or wind energy. Credits:Courtesy of the researchers

 

The Latest on: Ammonia photosynthesis

[google_news title=”” keyword=”Ammonia photosynthesis” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Ammonia photosynthesis

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top