Now Reading
Stretchable electronics help the heart

Stretchable electronics help the heart

When a patient has an arrhythmia (an irregular heartbeat), cardiologists will often treat the disorder by inserting two tube-like catheters into the patient’s heart.

The first catheter is used for mapping out the heart tissue, identifying the location of cells that are causing the arrhythmia. The second catheter, which has an electrode on the end, is then directed to those locations, where it kills the aberrant cells in a process known as ablation. Scientists have recently developed a single catheter with added stretchable electronics, however, that does both jobs in one step.

The team from the University of Illinois at Urbana-Champaign laminated a flexible meshwork of linked sensors and electrodes onto a conventional endocardial balloon catheter. Such catheters are typically inserted into constricted blood vessels or valves. As the catheter is inflated, it gently presses against the insides of the blood vessel, helping to open it up.

In this case, as the catheter makes contact with the cardiac muscle, the sensors measure electrical activity, temperature, blood flow, and pressure. Based on this data, the locations of irregularly-beating cells are established. The electrodes adjacent to those locations proceed to ablate the cells, after which the catheter is deflated and removed.

“It’s all in one, so it maps and zaps,” said project leader John A. Rogers, a professor of materials science and engineering. “The idea here is instead of this single-point mapping and separate single-point zapping catheter, have a balloon that offers all that functionality, in a mode that can do spatial mapping in a single step. You just inflate it right into the cavity and softly push all of that electronics and functionality against the tissue.”

See Also

Read more . . .

 

Enhanced by Zemanta
What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top