Iran makes some of the world’s toughest concrete.
It can cope with earthquakes and, perhaps, bunker-busting bombs
A DUAL-USE technology is one that has both civilian and military applications. Enriching uranium is a good example. A country may legitimately do so to fuel power stations. Or it may do so illegitimately to arm undeclared nuclear weapons. Few, however, would think of concrete as a dual-use technology. But it can be. And one country—as it happens, one that is very interested in enriching uranium—is also good at making what is known as “ultra-high performance concrete” (UHPC).
Iran is an earthquake zone, so its engineers have developed some of the toughest building materials in the world. Such materials could also be used to protect hidden nuclear installations from the artificial equivalent of small earthquakes, namely bunker-busting bombs.
To a man with a hammer…
Leon Panetta, America’s defence secretary, seems worried. He recently admitted that his own country’s new bunker-busting bomb, the Massive Ordnance Penetrator (MOP, pictured above being dropped from a B-52), needs an upgrade to take on the deepest Iranian bunkers. But even that may not be enough, thanks to Iran’s mastery of smart concrete.
UHPC is based—like its quotidian cousins—on sand and cement. In addition, though, it is doped with powdered quartz (the pure stuff, rather than the tainted variety that makes up most sand) and various reinforcing metals and fibres.
UHPC can withstand more compression than other forms of concrete. Ductal, a French version of the material which is commercially available, can withstand pressure many times higher than normal concrete can. UHPC is also more flexible and durable than conventional concrete. It can therefore be used to make lighter and more slender structures.
For this reason, Iranian civil engineers are interested in using it in structures as diverse as dams and sewage pipes and are working on improving it. Mahmoud Nili of Bu-Ali Sina University in Hamadan for example, is using polypropylene fibres and quartz flour, known as fume, in his mix. It has the flexibility to absorb far heavier blows than regular concrete. Rouhollah Alizadeh of the University of Tehran may do better still. Dr Alizadeh, a graduate of the University of Tehran, is currently working at Ottawa University in Canada on the molecular structure of cement. That could pave the way for a new generation of UHPC with precisely engineered properties and outstanding performance.
One way to tamper with the internal structure of concrete is to use nanoparticles. Ali Nazari and his colleagues at Islamic Azad University in Saveh have published several papers on how to do that with different types of metal-oxide nanoparticles. They have worked with oxides of iron, aluminium, zirconium, titanium and copper. At the nanoscale materials can take on extraordinary properties. Although it has been demonstrated only in small samples, it might be possible, using such nanoparticles, to produce concrete that is four times stronger than Ductal.