Scientists at the University of East Anglia are getting closer to solving the problem of antibiotic resistance.
New research published today in the journal Nature reveals the mechanism by which drug-resistant bacterial cells maintain a defensive barrier.
The findings pave the way for a new wave of drugs that kill superbugs by bringing down their defensive walls rather than attacking the bacteria itself. It means that in future, bacteria may not develop drug-resistance at all.
Unravelling this mechanism could also help scientists understand more about human cell dysfunctions linked to disorders such as diabetes, Parkinson’s and other neurodegenerative diseases.
The team, supported by the Wellcome Trust, used Diamond Light Source, one of the world’s most advanced scientific machines, to investigate a class of bacteria called ‘Gram-negative bacteria’.
Diamond produces intense light 10 billion times brighter than the sun, allowing scientists to explore almost any material in atomic detail.
Gram-negative bacteria is particularly resistant to antibiotics because of its cells’ impermeable lipid-based outer membrane.
This outer membrane acts as a defensive barrier against attacks from the human immune system and antibiotic drugs. It allows the pathogenic bacteria to survive, but removing this barrier causes the bacteria to become more vulnerable and die.
The research team previously found an ‘Achilles heel’ in this defensive barrier. But exactly how this defensive cell wall is built and maintained – the ‘assembly machinery’ – was unknown until now.
Lead researcher Prof Changjiang Dong, from UEA’s Norwich Medical School, said: “Bacterial multi-drug resistance, also known as antibiotic resistance, is a global health challenge. Many current antibiotics are becoming useless, causing hundreds of thousands of deaths each year. The number of super-bugs is increasing at an unexpected rate.
“Gram-negative bacteria is one of the most difficult ones to control because it is so resistant to antibiotics.
“All Gram-negative bacteria have a defensive cell wall. Beta-barrel proteins form the gates of the cell wall for importing nutrition and secreting important biological molecules.
“The beta-barrel assembly machinery (BAM) is responsible for building the gates (beta-barrel proteins) in the cell wall.
“Stopping the beta-barrel assembly machine from building the gates in the cell wall cause the bacteria to die.”
Scientists studied the gram-negative bacteria E.coli, in which the beta-barrel assembly machinery contains five subunits – known as BamA, BamB, BamC, BamD and BamE. They wanted to know exactly how these subunits work together to insert the outer membrane proteins into the outer membrane or cell wall.
Prof Dong said: “Our research shows the whole beta-barrel assembly machinery structures in two states – the starting and finishing states. We found that the five subunits form a ring structure and work together to perform outer membrane protein insertion using a novel rotation and insertion mechanism.
“Our work is the first to show the entire BAM complex. It paves the way for developing new-generation drugs.
Learn more: UEA scientists pave way for new generation of superbug drugs
The Latest on: Superbug drugs
[google_news title=”” keyword=”superbug drugs” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Superbug drugs
- Overuse And Resistance – The Perils Of Modern Medicine That Are Upon Uson July 24, 2024 at 5:30 pm
When the Drugs Do not Work: The Hidden Pandemic that Could End Modern Medicine. The writer is Dr Anirban Mahapatra, a US-based microbiologist. It is a gripping read and deals with the growing threat ...
- New, faster sepsis test could save lives, scientists sayon July 24, 2024 at 8:00 am
Preliminary experiments suggest that a new test could diagnose bacterial infections that cause sepsis days faster than conventional approaches, with potentially lifesaving consequences.
- Northwestern biotech spinout raises $45 millionon July 24, 2024 at 7:18 am
Biotech startup Vanqua Bio has raised more money from investors to help it continue developing drugs to treat Parkinson’s and Alzheimer’s diseases. Vanqua Bio recently raised $45 million in a Series B ...
- Bye Bye Superbugs? New Antibiotic Is Virtually Resistance-Proofon July 24, 2024 at 6:07 am
Laura is an editor and staff writer at IFLScience. She obtained her Master's in Experimental Neuroscience from Imperial College London.
- UIC scientists develop combo antibiotic that can prevent superbugson July 24, 2024 at 3:16 am
A series of discoveries about the chemistry of antibiotics and the ribosomes they target may have found a way around bacteria's pesky ability to evolve resistances.
- Could a Conflict-Borne Superbug Bring on Our Next Pandemic?on July 22, 2024 at 1:32 pm
Drug-resistant bacteria are proliferating in war zones like Gaza and Ukraine — and spreading from the battlefield to hospitals and across borders.
- A growing threat that needs public attentionon July 22, 2024 at 12:50 pm
What happens to an issue that has been well documented, has and will have a devastating impact, but has seen little sustained public attention? That’s what’s happening when it comes to the growing ...
- Sci-fi horror bug discovered on International Space Stationon July 21, 2024 at 7:08 am
Aboard the International Space Station, NASA discovered 13 strains of a superbug, a multidrug-resistant bacterium. Its name? Enterobacter bugandensis.
- 'Leadership failure' at baby deaths hospital - MPon July 17, 2024 at 7:27 am
An MP has said there were "clear failures of leadership" at a hospital where two babies died during a preventable bacterial infection outbreak. The deaths of two newborn infants at Bradford Royal ...
- The superbugs lurking in seas and riverson July 13, 2024 at 2:01 am
Drug-resistant superbugs are on the rise, prompting researchers and campaigners in the UK to call for a water system clean-up.
via Bing News