Now Reading
Notre Dame researchers using new technologies to combat invasive species

Notre Dame researchers using new technologies to combat invasive species

water_300
via University of Notre Dame

“Aquatic invasive species cause ecological and economic damage worldwide, including the loss of native biodiversity and damage to the world’s great fisheries”

A new research paper by a team of researchers from the University of Notre Dame’s Environmental Change Initiative(ND-ECI) demonstrates how two cutting-edge technologies can provide a sensitive and real-time solution to screening real-world water samples for invasive species before they get into our country or before they cause significant damage.

“Aquatic invasive species cause ecological and economic damage worldwide, including the loss of native biodiversity and damage to the world’s great fisheries,” said Scott Egan, a research assistant professor with Notre Dame’s Advanced Diagnostics and Therapeutics Initiative and a member of the research team. “This research combines two new, but proven, technologies — environmental DNA (eDNA) and light transmission spectroscopy (LTS), to address the growing problem of aquatic invasive species by increasing our ability to detect dangerous species in samples before they arrive or when they are still rare in their environment and have not yet caused significant damage.”

Egan points out that eDNA is a species surveillance tool that recognizes a unique advantage of aquatic sampling: Water often contains microscopic bits of tissue in suspension, including the scales of fish, the exoskeletons of insects and the sloughed cell and tissues of aquatic species. These tissue fragments can be filtered from water samples, and then a standard DNA extraction is performed on the filtered matter. The new sampling method for invasive species was pioneered by members of ND-ECI, including Notre Dame’s David Lodge and Chris Jerde, Central Michigan University’s Andrew Mahon and The Nature Conservancy’s Lindsay Chadderton.

Egan explains that LTS, which was developed by Notre Dame physicists Steven Ruggiero and Carol Tanner, can measure the size of small particles on a nanometer scale (1 nanometer equals 1 billionth of a meter). LTS was used in the research forDNA-based species detection where the LTS device detects small shifts in the size of nanoparticles with short single-stranded DNA fragments on their surface that will only bind to the DNA of a specific species.

“Thus, these nanoparticles grow in size in the presence of a target species, such as a dangerous invasive species, but don’t in the presence of other species,” Egan said. “In addition to the sensitivity of LTS, it is also advantageous because the device fits in a small suitcase and can operate off a car battery in the field, such as a point of entry at the border of the U.S.”

See Also

Read more . . .

 

The Latest Bing News on:
World Wide Web
The Latest Google Headlines on:
World Wide Web
[google_news title=”” keyword=”World Wide Web” num_posts=”10″ blurb_length=”0″ show_thumb=”left”] [/vc_column_text]
The Latest Bing News on:
Fix the internet
The Latest Google Headlines on:
Fix the internet

[google_news title=”” keyword=”fix the internet” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top