Now Reading
New study discovers copper destroys highly infectious norovirus

New study discovers copper destroys highly infectious norovirus

Norovirus_4 (1)
English: Norovirus particles (Photo credit: Wikipedia)

Scientists from the University of Southampton have discovered that copper and copper alloys rapidly destroy norovirus – the highly-infectious sickness bug.

Worldwide, norovirus is responsible for more than 267 million cases of acute gastroenteritis every year. In the UK, norovirus costs the National Health Service at least £100 million per year, in times of high incidence, and up to 3,000 people admitted to hospital per year in England.

There is no specific treatment or vaccine, and outbreaks regularly shut down hospital wards and care homes, requiring expensive deep-cleaning, incurring additional treatment costs and resulting in lost working days when staff are infected. Its impact is also felt beyond healthcare, with cruise ships and hotels suffering significant damage to their reputation when epidemics occur among guests.

The virus is highly infectious and can be contracted from contaminated food or water, person-to-person contact, and contact with contaminated surfaces, meaning surfaces made from copper could effectively shut down one avenue of infection.

The study, which was designed to simulate fingertip-touch contamination of surfaces, showed norovirus was rapidly destroyed on copper and its alloys, with those containing more than 60 per cent copper proving particularly effective.

Copper alloys have previously been shown to be effective antimicrobial surfaces against a range of bacteria and fungi. The Southampton research reported rapid inactivation of murine norovirus on alloys, containing over 60 per cent copper, at room temperature but no reduction of infectivity on stainless steel dry surfaces in simulated wet fomite and dry touch contamination. The rate of inactivation was initially very rapid and proportional to the copper content of alloy tested. Viral inactivation was not as rapid on brass as previously observed for bacteria but copper-nickel alloy was very effective.

One of the targets of copper’s antimicrobial activity was the viral genome and a reduced number of the gene for a viral encoded protein, VPg (viral-protein-genome-linked), which is essential for infectivity, was observed following contact with copper and brass dry surfaces.

Lead author Sarah Warnes, from the Centre for Biological Sciences at the University of Southampton, says: “The use of antimicrobial surfaces containing copper in clinical and community environments, such as cruise ships and care facilities, could help to reduce the spread of this highly infectious and costly pathogen.

“Copper alloys, although they provide a constant killing surface, should always be used in conjunction with regular and efficient cleaning and decontamination regimes using non-chelating reagents that could inhibit the copper ion activity.”

See Also

Read more . . .

 

 

The Latest Bing News on:
Antimicrobial surfaces
The Latest Google Headlines on:
Antimicrobial surfaces

[google_news title=”” keyword=”antimicrobial surfaces” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Copper and copper alloys rapidly destroy viruses
The Latest Google Headlines on:
Copper and copper alloys rapidly destroy viruses

[google_news title=”” keyword=”copper and copper alloys rapidly destroy viruses” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top