Now Reading
New robotic materials: From self-fixing bridges to camouflaging cars

New robotic materials: From self-fixing bridges to camouflaging cars

via phys.org
via phys.org

Prosthetics with a realistic sense of touch. Bridges that detect and repair their own damage. Vehicles with camouflaging capabilities.

Advances in materials science, distributed algorithms and manufacturing processes are bringing all of these things closer to reality every day, says a review published today in the journal Science by Nikolaus Correll, assistant professor of computer science, and research assistant Michael McEvoy, both of the University of Colorado Boulder.

The “robotic materials” being developed by Correll Lab and others are often inspired by nature, Correll said.

“We looked at organisms like the cuttlefish, which change their appearance depending on their environment, and the banyan tree, which grows above-ground roots to support the increasing weight of the trunk,” Correll said. “We asked what it would take to engineer such systems.”

Robotic materials require tight integration between sensing, computation and actually changing the materials properties of the underlying material. While materials can already be programmed to change some of their properties in response to specific stimuli, robotic materials can sense stimuli and determine how to respond on their own.

Correll and McEvoy use the example of artificial skin equipped with microphones that would analyze the sounds of a texture rubbing the skin and route information back to the central computer only when important events occurred.

“The human sensory system automatically filters out things like the feeling of clothing rubbing on the skin,” Correll said. “An artificial skin with possibly thousands of sensors could do the same thing, and only report to a central ‘brain’ if it touches something new.”

While all of these materials are possible, the authors caution that manufacturing techniques remain a challenge.

“Right now, we’re able to make these things in the lab on a much larger scale, but we can’t scale them down,” Correll said. “The same is true for nano- and microscale manufacturing, which can’t be scaled up to things like a building façade.”

The field also faces an education gap, the authors say. Developing robotic materials requires interdisciplinary knowledge that currently isn’t provided by materials science, computer science or robotics curricula alone.

Read more: Robotic materials: Changing with the world around them

 

The Latest on: Robotic materials

[google_news title=”” keyword=”Robotic materials” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Robotic materials

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top