Now Reading
New Electron Beam Writer Enables Next-Gen Biomedical and Information Technologies

New Electron Beam Writer Enables Next-Gen Biomedical and Information Technologies

ryan-anderson
Ryan Anderson, a process engineer for the Nano3 facility in the Qualcomm Institute, prepares to remove a sample from the Vistec EBPG5200 electron beam writer. Photo credit: UC San Diego Jacobs School of Engineering.

He is developing next-generation, nanoscale transistors for integrated electronics

The new electron beam writer housed in the Nano3 cleanroom facility at the Qualcomm Institute is important for electrical engineering professor Shadi Dayeh’s two major areas of research. He is developing next-generation, nanoscale transistors for integrated electronics; and he is developing neural probes that have the capacity to extract electrical signals from individual brain cells and transmit the information to a prosthetic device or computer. Achieving this level of signal extraction or manipulation requires tiny sensors spaced very closely together for the highest resolution and signal acquisition. Enter the new electron beam writer.

Electron beam (e-beam) lithography enables researchers to write very small patterns on large substrates with a high level of precision. It is a widely used tool in information technology and life science. Applications range from writing patterns on silicon and compound semiconductor chips for electronic device and materials research to genome sequencing platforms. But the ability to write patterns on the scale afforded by the Nano3 facility—with its minimum feature size of less than 8 nanometers on wafers with diameters that can be as large as 8 inches—is unique in Southern California. Before the facility opened earlier this year, the closest comparable e-beam writer was in Los Angeles. In an e-beam writer, unique patterns are “written” on a silicon wafer coated with a polymer resist layer that is sensitive to electron irradiation. The machine directs a narrowly focused electron beam onto the surface marking the pattern, making parts of the resist coating insoluble and others soluble. The soluble area is later washed away, revealing the pattern which can have sub-10 nanometer feature dimensions.

Bioengineering professor Todd Coleman will use the new e-beam writer as one essential step in the building of his epidermal, or tattoo, electronic devices. The devices are designed to acquire brain signals for a variety of medical applications, from monitoring infants for seizures in neonatal intensive care to studying the cognitive impairment associated with Alzheimer’s disease or dementia, and soldiers struggling with post-traumatic stress syndrome.

Electrical engineering Ph.D. candidate Andrew Grieco is using the machine to develop a new type of optical waveguide that promises to improve efficiency and reduce power consumption. Grieco works in the laboratory of Shaya Fainman, professor and chair, Department of Electrical and Computer Engineering. Developing on-chip optical networking devices such as waveguides, switches and amplifiers is a critical step in the development of optical chips. Although information systems rely primarily on fiber-optic networks to connect and share data around the world, the underlying computer technology is still based on electronic chips, causing data traffic jams.

Read more . . .

See Also

 

 

The Latest Bing News on:
Electron Beam Writer
The Latest Google Headlines on:
Electron Beam Writer

[google_news title=”” keyword=”Electron Beam Writer” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

The Latest Bing News on:
Nanoscale transistors
The Latest Google Headlines on:
Nanoscale transistors

[google_news title=”” keyword=”nanoscale transistors” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top