Now Reading
New Discovery Paves the Way for Using Super Strong Nanostructured Metals in Cars

New Discovery Paves the Way for Using Super Strong Nanostructured Metals in Cars

Crash Test Communication
Image by Runs With Scissors via Flickr

Super strong nanometals are beginning to play an important role in making cars even lighter, enabling them to stand collisions without fatal consequences for the passengers.

A PhD student at Risø DTU has discovered a new phenomenon that will make nanometals more useful in practice.

Today, the body of an ordinary family car consists of 193 different types of steel. The steel for each part of the car has been carefully selected and optimised. It is important, for example, that all parts are as light as possible because of the fuel consumption, whereas other parts of the car have to be super strong in order to protect passengers in a collision.

Super strong nanostructured metals are now entering the scene, aimed at making cars even lighter, enabling them to stand collisions in a better way without fatal consequences for the passengers. Research into this field is being conducted worldwide. Recently, a young PhD student from the Materials Research Division at Risø DTU took research a step further by discovering a new phenomenon. The new discovery could speed up the practical application of strong nanometals and has been published in the journal Proceedings of the Royal Society in London.

The research task of the young student, Tianbo Yu, is to determine the stability in new nanostructured metals, which are indeed very strong, but also tend to become softer, even at low temperatures. This is due to the fact that microscopic metal grains of nanostructured metals are not stable — a problem of which Tianbo Yu’s discovery now provides an explanation.

See Also

The fine structure consists of many small metal grains. The boundaries between these metal grains can move, also at room temperature. At the same time a coarsening of the structure takes place and the strength of the nanometal is consequently weakened. Tianbo Yu’s has now shown that the boundaries of the grains can be locked, when small particles are present and that the solution is technologically feasible. This has paved the way for car components to be made of nanometals.

Read more . . .

Enhanced by Zemanta
What's Your Reaction?
Don't Like it!
0
I Like it!
0
View Comments (0)

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Scroll To Top