
A soft ring oscillator gives soft robots new movements without the hard parts
Soft robots can’t always compete with the hard. Their rigid brethren dominate assembly lines, perform backflips, dance to Bruno Mars’ “Uptown Funk,” fly, dive, and walk through volcanoes.
But each year, soft robots gain new abilities. They’ve learned to jump, squirm, and grip. And, unlike hard robots, they can handle tomatoes without bruising the fruit, resurface unscathed after being run over by a car, and journey through radiation, disaster zones, and outer-space with few scars. For people and animals, they have a “cooperative function”: a soft touch.

Recently, researchers in the lab of George M. Whitesides, the Woodford L. and Ann A. Flowers University Professor, have invented soft replacements for the last hard parts required to build a robot. Instead of electricity and wires, pressurized air expands and contracts rubber inflatables to create movement, soft valves take over for the hard, and soft digital logic replicates the same capabilities of an electronic computer.
Now, postdoctoral scholar Daniel J. Preston’s latest soft invention gives these robots new, complex movements. As first author on a study published in Science Robotics, he introduces the first soft ring oscillator, which gives soft robots the ability to roll, undulate, sort, meter liquids, and swallow.
“It’s another tool in the toolkit to make these smart, soft robots without any electronics, and without any hard valves,” Preston says.
Until now, ring oscillators were made with electronic transistors or microfluidics. Electronics always require hard components. Most microfluidics do, too. Many use glass for their pressurized water or air systems and require thin channels that can only handle very low flow rates, limiting operation speeds. Tiny microfluidic systems might achieve higher frequencies than Preston’s macroscale pneumatic ring oscillator, but his team already has blueprints to tweak their soft system to achieve greater speeds, if needed.
The soft ring oscillator—like all ring oscillators—relies on inverters (“NOT” digital logic gates). Preston’s inverters, for example, manipulate the air pressure in his robot’s rubber tubes: If the input is high pressure, the output will be low pressure and vice versa. When three, or any odd number, of gates are connected in a ring, one gate’s shift triggers the next, which triggers the next, and on and on.
“The cool response that you get when you combine an odd number of these inverters in a loop is an instability that travels around the loop,” Preston says. Like a slinky that collapses in order to spring down a flight of stairs, one movement sparks the next, creating a constant pace without the need for another push.
To test what the soft ring oscillator could do, Preston and his team created five soft robot prototypes. Each uses a single, constant source of air pressure to run three pneumatic actuators (the inverters).
One prototype nudges a ball around a ring. Another undulates a stage to keep beads of two different sizes rolling against the edge. Eventually, all the smaller beads fall through a hole in the side of the stage. They sort themselves out.
Before they start clinical trials for their sleeve, the team wants to gauge interest. If enough people crave a softer, less expensive way to alleviate and prevent symptoms, the product might just find a big enough market to merit further research.
The low cost of Preston’s materials—rubber-like silicone elastomers—makes them ideal for more than just inexpensive homecare. Biocompatible, disposable, gentle, and sterile versions could be used for lab experiments, drug delivery, or even medical devices inside the body like this sleeve that helps the heart beat. Preston’s final prototype can sort three different colored liquids based on a pre-determined sequence and time, a tool that could prove useful for chemists.
Though all of Preston’s prototypes are made with only soft materials, they’re not yet untethered: All rely on a constant source of pressurized air. Yet Preston and his colleagues have a few solutions for this, too. For the leg sleeve, patients could provide their own air with a hand-held pump like those used to take blood pressure. And soft robots in the trenches could use mobile carbon dioxide cartridges, strapped on like a backpack, or gas-generating chemical reactions to set the bot in motion.
But Preston expects his new tool to achieve far more than the applications demonstrated in his five prototypes. Since the paper explains how to replicate and customize the design, he hopes other labs will find even more uses. “People can use the soft ring oscillator for a lot of different applications in soft robotics, some of which we may not have even thought of or envisioned yet.”
Learn and see more: Soft robots for all
The Latest on: Soft robotics
[google_news title=”” keyword=”soft robotics” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]
via Google News
The Latest on: Soft robotics
- This smiling robot has a face covered in 'living' skinon July 31, 2024 at 6:24 am
While it might look like the stuff of nightmares, this tiny robot covered in living skin could mark a step forward in the quest to make robots more human-like. It's the work of researchers in Japan, ...
- Rice Lab’s foam-based fluidic circuits for next-gen wearables and roboticson July 27, 2024 at 6:32 am
Next-generation soft robotics and wearable technologies could sport foam-based fluidic circuits.
- Engineers create smart valve to boost soft robots’ toughnesson July 26, 2024 at 4:17 pm
Engineers at the University of Sheffield have developed a new type of valve that enhances the resilience of soft robots, making them more durable and reliable. This innovation, reported in Science ...
- Morphology And Motion For New Soft Robots With Biological Styleon July 26, 2024 at 11:52 am
New trends suggest we are headed for making robots more realistic, with softer contours and more biologically-driven features.
- New technology allows robots to survive through self-amputationon July 26, 2024 at 1:47 am
The technology not only aids in robot survival, it enables dynamic shape-change. Self-amputation in nature has been an effective survival strategy for certain animals. The ability to shed parts of ...
- Engineers design new valve to give soft robots resilience booston July 25, 2024 at 8:32 am
A new type of valve that makes soft robots more resilient to damage, has been developed by engineers at the University of Sheffield.
- soft roboticson July 24, 2024 at 5:00 pm
Many scifi robots have taken the form of their creators. In the increasingly blurry space between the biological and the mechanical, researchers have found a way to affix human skin to robot faces.
- Sea slug feeding structure model informs soft robot designon July 24, 2024 at 10:25 am
Carnegie Mellon University researchers at the Biohybrid and Organic Robotics Group (B.O.R.G.) led by Victoria Webster-Wood, in collaboration with researchers at Case Western Reserve University, are ...
- Foam-based pneumatic circuits enable new capabilities in soft robotics and wearable deviceson July 24, 2024 at 7:39 am
Researchers develop flexible pneumatic circuits using porous foam, advancing control systems for soft robots and wearables with innovative fluidic logic and sensing capabilities.
- Light-guided jellyfish robots navigate in 3D, boost targeted drug deliveryon July 18, 2024 at 4:15 am
Scientists have developed innovative jellyfish robots that are controlled by light and can navigate underwater obstacles.
via Bing News