Now Reading
Harvard team successfully reverses the aging process in mice

Harvard team successfully reverses the aging process in mice

Chromosomes, with their telomere caps highlighted. Looking after these telomeres could be the key to longer life.

The aging process – it’s undignified, unwanted, and many would say unnecessary.

After all, the cells in your body are constantly replacing themselves – why can’t they do it without causing progressive degradation of organs that lead to discomfort, weakness and death? Well, perhaps they can. Harvard scientists have discovered that by controlling certain genetic processes in mice, they can not only slow down the aging process, but “dramatically” reverse it throughout the body. It’s a massive discovery, but it won’t be able to be used in humans yet without some pretty scary consequences.

Telomeres

The Harvard study focused on part of the cell division process called ‘telomere shortening.’ If you picture a chromosome as an X-shaped unit of DNA, the telomeres are the little caps at the end of each strand.

As cells divide, their DNA splits in half to form two new cells – but a bit of genetic information is lost at the end of each strand with each division. That’s what telomeres are for – they contain a bunch of useless DNA that acts as a buffer zone so that no important DNA is lost from our chromosomes. Gradually, over time, the telomere erodes away to a level where each cell division actually starts destroying bits of important DNA – and this gets to a point where the cell can no longer reproduce itself. You can imagine what that starts doing to bodily organs as time goes by.

So in a way, telomeres are there as a built-in limit to how many times a cell can divide itself – they’re part of the built-in biological clock that causes aging, body deterioration and death.

The Harvard Study

And that’s where this recent study was focused. Ronald DePinho and a team of Harvard colleagues experimented on mice to see what happens when steps are taken to stop telomeres from shortening.

The group looked at the enzyme telomerase, which can replenish the telomere after replication and effectively lengthen it so that a cell can live for longer.

They bred a group of genetically-engineered mice that lacked the ability to produce telomerase – and watched as these mice showed rapid and very early onset symptoms of aging.

See Also

Then, they gave the mice injections to re-activate the telomerase enzyme – expecting to see the aging process slow down to normal levels. Instead, they watched in astonishment as the mice appeared to age backwards, their withered organs repairing themselves even to the point of new neurons beginning to sprout in their brains.

In essence, repairing the telomeres seemed to be able to reverse the aging process and make the mice physiologically younger, despite already suffering the ravages of age.

But it’s not so simple for humans

Read more . . .

Enhanced by Zemanta
What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top