Graphene: A material that multiplies the power of light

300px-Graphene_Crystall
Graphene Crystall (Photo credit: Wikipedia)

ICFO scientists show that graphene is highly efficient in converting light to electricity

Bottles, packaging, furniture, car parts… all made of plastic. Today we find it difficult to imagine our lives without this key material that revolutionized technology over the last century. There is wide-spread optimism in the scientific community that graphene will provide similar paradigm shifting advances in the decades to come. Mobile phones that fold, transparent and flexible solar panels, extra thin computers… the list of potential applications is endless. Scientists, industries and the European Commission are so convinced of the potential of graphene to revolutionize the world economy that they promise an injection of €1.000 million in graphene research.

The most recent discovery published in Nature Physics and made by researchers at the Institute of Photonic Science (ICFO), in collaboration with Massachusetts Institute of Technology, USA, Max Planck Institute for Polymer Research, Germany, and Graphenea S.L. Donostia-San Sebastian, Spain, demonstrate that graphene is able to convert a single photon that it absorbs into multiple electrons that could drive electric current (excited electrons) – a very promising discovery that makes graphene an important alternative material for light detection and harvesting technologies, now based on conventional semiconductors like silicon.

“In most materials, one absorbed photon generates one electron, but in the case of graphene, we have seen that one absorbed photon is able to produce many excited electrons, and therefore generate larger electrical signals” explains Frank Koppens, group leader at ICFO. This feature makes graphene an ideal building block for any device that relies on converting light into electricity. In particular, it enables efficient light detectors and potentially also solar cells that can harvest light energy from the full solar spectrum with lower loss.

The experiment consisted in sending a known number of photons with different energies (different colors) onto a monolayer of graphene. “We have seen that high energy photons (e.g. violet) are converted into a larger number of excited electrons than low energy photons (e.g. infrared). The observed relation between the photon energy and the number of generated excited electrons shows that graphene converts light into electricity with very high efficiency. Even though it was already speculated that graphene holds potential for light-to-electricity conversion, it now turns out that it is even more suitable than expected!” explains Tielrooij, researcher at ICFO.

See Also

Read more . . .

 

The Latest Bing News on:
Converting light to electricity
The Latest Google Headlines on:
Converting light to electricity
[google_news title=”” keyword=”converting light to electricity” num_posts=”10″ blurb_length=”0″ show_thumb=”left”] [/vc_column_text]
The Latest Bing News on:
Graphene
The Latest Google Headlines on:
Graphene

[google_news title=”” keyword=”graphene” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top