Electronic Sensors Printed Directly on the Skin

printable.skin_.electronics.2x299
via MIT

New electronic tattoos could help monitor health during normal daily activities.

So-called “epidermal electronics” were demonstrated previously in research from the lab of John Rogers, a materials scientist at the University of Illinois at Urbana-Champaign; the devices consist of ultrathin electrodes, electronics, sensors, and wireless power and communication systems. In theory, they could attach to the skin and record and transmit electrophysiological measurements for medical purposes. These early versions of the technology, which were designed to be applied to a thin, soft elastomer backing, were “fine for an office environment,” says Rogers, “but if you wanted to go swimming or take a shower they weren’t able to hold up.” Now, Rogers and his coworkers have figured out how to print the electronics right on the skin, making the device more durable and rugged.

“What we’ve found is that you don’t even need the elastomer backing,” Rogers says. “You can use a rubber stamp to just deliver the ultrathin mesh electronics directly to the surface of the skin.” The researchers also found that they could use commercially available “spray-on bandage” products to add a thin protective layer and bond the system to the skin in a “very robust way,” he says.

Eliminating the elastomer backing makes the device one-thirtieth as thick, and thus “more conformal to the kind of roughness that’s present naturally on the surface of the skin,” says Rogers. It can be worn for up to two weeks before the skin’s natural exfoliation process causes it to flake off.

During the two weeks that it’s attached, the device can measure things like temperature, strain, and the hydration state of the skin, all of which are useful in tracking general health and wellness. One specific application could be to monitor wound healing: if a doctor or nurse attached the system near a surgical wound before the patient left the hospital, it could take measurements and transmit the information wirelessly to the health-care providers.

See Also
A Penn State-led research team developed a standalone system to monitor nitrogen dioxide in exhaled breath and in the environment. Fabricated from the same nanocomposite material, the self-powered system stretches to adhere to skin or clothes. Credit: Provided by Huanyu "Larry" Cheng/Penn State.

 Read more . . .

 

The Latest Bing News on:
Epidermal electronics
The Latest Google Headlines on:
Epidermal electronics
[google_news title=”” keyword=”epidermal electronics” num_posts=”10″ blurb_length=”0″ show_thumb=”left”] [/vc_column_text]
The Latest Bing News on:
Electronic tattoos
The Latest Google Headlines on:
Electronic tattoos

[google_news title=”” keyword=”electronic tattoos” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top