Now Reading
Can carbon quantum dots be utilized to help combat neurological disorders?

Can carbon quantum dots be utilized to help combat neurological disorders?

(A) Hydrogen bonding and ?-? interactions between AG-QDs with DNA at select binding sites. Green dotted lines show H-bonds between AG-QDs and basic groups, purines and pyrimidines. Yellow lines show ?-? interactions between AG-QDs and basic groups (cytimidine, guanine, adenine, and thymine). Carbon, oxygen, hydrogen, and nitrogen are colored in grey, red, white, and blue, respectively. (B) Comparison of the structures of Marijuana and designed Quantum dots. The formation of the cQD from marijuana results in a greater number of sp2 carbons. In turn, this will increase the hydrophobicity of the designed ligand and thereby increase lipophilic interactions with the CB1 receptor for hydrophobic binding subsites near CB1. It also not only makes the cQD a better free radical scavenger but also assists in tracking (via fluorescence imaging). (C) Docking of Tetrahydrocannabinol(green), and designed Quantum dots (generated “in silico” to potentially bind to the CB1 receptor) in CB1 receptor a) Tetrahydrocannabinol (green) and QD 1 (pink) b) Tetrahydrocannabinol (green) and QD 1 (white). The “cQD”s were docked through CB1 crystal structure (PDB:5TGZ) using SYBYL-X with Surflex-Dock program. Both QD1 (pink), and QD2 (white) were superimposed very well in CB1 binding site, compared to Tetrahydrocannabinol (green). The pockets were filled such that the free energy reached a minimum value effectively (suggestive of a global minima). A part of this Figure is adapted from [5].

(A) Hydrogen bonding and ?-? interactions between AG-QDs with DNA at select binding sites. Green dotted lines show H-bonds between AG-QDs and basic groups, purines and pyrimidines. Yellow lines show ?-? interactions between AG-QDs and basic groups (cytimidine, guanine, adenine, and thymine). Carbon, oxygen, hydrogen, and nitrogen are colored in grey, red, white, and blue, respectively. (B) Comparison of the structures of Marijuana and designed Quantum dots. The formation of the cQD from marijuana results in a greater number of sp2 carbons. In turn, this will increase the hydrophobicity of the designed ligand and thereby increase lipophilic interactions with the CB1 receptor for hydrophobic binding subsites near CB1. It also not only makes the cQD a better free radical scavenger but also assists in tracking (via fluorescence imaging). (C) Docking of Tetrahydrocannabinol(green), and designed Quantum dots (generated “in silico” to potentially bind to the CB1 receptor) in CB1 receptor a) Tetrahydrocannabinol (green) and QD 1 (pink) b) Tetrahydrocannabinol (green) and QD 1 (white). The “cQD”s were docked through CB1 crystal structure (PDB:5TGZ) using SYBYL-X with Surflex-Dock program. Both QD1 (pink), and QD2 (white) were superimposed very well in CB1 binding site, compared to Tetrahydrocannabinol (green). The pockets were filled such that the free energy reached a minimum value effectively (suggestive of a global minima). A part of this Figure is adapted from [5].

Can carbon quantum dots be utilized to help combat neurological disorders?

The contributions of researchers from The University of Texas at El Paso (UTEP) have yielded the first indication that carbon quantum dots, a class of nanoparticles, can be utilized to combat neurological disorders, according to a paper published in the journal Processes as part its special issue on protein biosynthesis and drug design and delivery.

The study, titled “Untangling the Potential of Carbon Quantum Dots in Neurodegenerative Disease,” was co-authored by Sreeprasad T. Sreenivasan, Ph.D., and Mahesh Narayan, Ph.D., assistant professor and professor, respectively, in UTEP’s Department of Chemistry and Biochemistry. The pair contributed to work by Prakash Narayan, Ph.D., vice president of preclinical research for Angion Biomedica Corp. in Uniondale, New York; and Lindsey Jung, a student at Tenafly High School in New Jersey, who works under Prakash Narayan’s supervision.

The study focuses on carbon quantum dots (CQDs), biofriendly materials synthesized from waste materials such as wood, fruit peel, algae and even salmon. A road map laid out by the research team addresses, for the first time, key requirements for the transitioning of their use from environmental-sensing applications into the neurodegenerative domain; a crossing-over that requires their separation and total characterization, including aspects related to safety and their ability to target specific receptors in the brain.

“The carbonaceous quanta are finally making their way from physics into chemistry and now, biology,” Prakash Narayan said. “This work lays the foundation for harnessing the enormous potential of carbon quantum dots for therapeutic intervention in neuro disease.”

The CQDs are made by “pressure-cooking” waste biomaterials such as fruit peel, amino acids, algae and even fish. As an outcome of the procedure, they are synthesized as a mixture of carbon dots and non-carbon dots. Some of the compounds in the mixture can be toxic. This aspect would negate their use in biomedical applications.

To facilitate the crossing-over of CQDs into preclinical and eventually clinical use, the research team provides a path for their safe use while demonstrating their potential to both prevent and treat neurodegenerative disorders, Mahesh Narayan said.

See Also

The research was conducted at Angion Biomedica and at UTEP’s Functional Quantum Materials Laboratory and the Laboratory for Neurodegenerative Research.

The transitioning of CQD applications from electrochemistry, catalysis and environmental sensing to biomedicine represents an important milestone in its 15-year history; a bellwether for its yet-unrealized potential in interventional biology, imaging, diagnostics, prophylaxis and therapy.

“This will allow pharmaceutical companies to tailor carbon quantum dots for specific uses,” Mahesh Narayan said. “Individuals with Parkinson’s and Alzheimer’s could benefit greatly from this kind of therapy.”

The Latest Updates from Bing News & Google News

Go deeper with Bing News on:
Neurological disorders
Go deeper with Google Headlines on:
Neurological disorders

[google_news title=”” keyword=”neurological disorders” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]

Go deeper with Bing News on:
Carbon quantum dots
Go deeper with Google Headlines on:
Carbon quantum dots

[google_news title=”” keyword=”carbon quantum dots” num_posts=”5″ blurb_length=”0″ show_thumb=”left”]

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top