Now Reading
Bionic sense of touch through carbon nanotube research?

Bionic sense of touch through carbon nanotube research?

The joining of two carbon nanotubes with diffe...
Image via Wikipedia

The human body is an amazingly complex bit of kit. Replicating it with bionic technology presents challenges on many fronts, including the formidable task of mimicking our sense of touch. This goal could now be a little closer thanks to a breakthrough in carbon nanotube processing by scientists at Oak Ridge National Laboratory. Borrowing from conventional methods of making glass fiber, the researchers managed to cram 19,600 individual carbon nanotube-containing channels into fibers just four times thicker than a human hair, putting the artificial structure on a scale similar to the tiny neural bundles that make up our nerve pathways.

“Our goal is to use our discovery to mimic nature’s design using artificial sensors to effectively restore a person’s ability to sense objects and temperatures,” said Ilia Ivanov, a researcher in the Center for Nanophase Materials Sciences Division.

“The human hand has a density of receptors at the fingertips of about 2,500 per square centimeter and about 17,000 tactile receptors in the hand,” Ivanov said. “So in terms of density of channels, we are already in the range needed for 17,000 receptors in the hand.”

See Also

Read more . . .

Reblog this post [with Zemanta]
What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top